Extending Web-Based Applications to
Incorporate Autonomous Behavior

Ingrid O. Nunes
PUC-Rio, LES
Rio de Janeiro, Brazil
ioliveira@inf.puc-rio.br

ABSTRACT

Web applications are popular nowadays due to the ubig-
uity of the client and also because user experience is becom-
ing each time more interactive. However, several tasks of
these applications can be automated. Agent-oriented soft-
ware engineering has emerged as a new software engineer-
ing paradigm to allow the development of applications that
present autonomous behavior. In this work, we present two
case studies of web-based systems, on which we added au-
tonomous behavior by means of software agents. We also
discuss some design and implementation issues found on the
development of those systems and propose an architectural
pattern as a consequence of our case studies.

Categories and Subject Descriptors

D.2 [Software Engineering]: Software Architectures; 1.2.11.d

[Artificial Intelligence]: Multiagent systems

General Terms
Web system, Agents

Keywords
Web Application, Autonomous Behavior, Multi-agent Sys-
tems, Architectural Pattern

1. INTRODUCTION

The World Wide Web has begun providing navigation through
static web pages. However, now navigation can also provide
an interactive experience, presenting pages with dynamic
content, which are generated according to information sub-
mitted by users or based on their preferences. Over the last
years, several technologies have emerged to make the user
interaction with the web more interactive and to produce
richer web pages. This is accomplished by code running
on the client-side, written in scripting languages, such as
JavaScript or ActionScript, as also on the server-side, writ-
ten in languages/frameworks, such as JSP, ASP and PHP,
which allow the development of web applications that can
process information received from users and give a specific
response for them. Moreover, several new technologies came
out improving even more the user experience, such as AJAX,
which is a group of inter-related web development techniques
used for creating interactive web applications and avoiding
unsightly complete-page reloads, and Flex, an open source
framework for building and maintaining expressive web ap-
plications. All of these new technologies and characteris-
tics of web applications make them very popular. Another

Uira Kulesza
Federal University of Rio
Grande do Norte (UFRN)

. Natal, Brazil
uira@dimap.ufrn.br

Camila Nunes, Elder
Cirilo, Carlos Lucena
PUC-Rio, LES
Rio de Janeiro, Brazil
{cnunes,ecirilo,lucena}

@inf.puc-rio.br

reason for their popularity is that web applications can be
updated and maintained without distributing and installing
software on potentially thousands of client computers.

On the other hand, over the last years, agent-oriented soft-
ware engineering has emerged as a new software engineering
paradigm to allow the development of distributed complex
applications that are characterized by a system composed
of many interrelated sub-systems [11]. A software agent
is an abstraction that enjoys mainly the following prop-
erties [19]: autonomy, reactivity, pro-activeness and social
ability. Current web applications have several tasks that
need human interaction to be executed. The addition of au-
tonomous behavior to these web applications can bring a lot
of advantages for them, providing the automation (or semi-
automation) of tasks that need human intervention and the
incorporation of intelligent services. There are plenty of ex-
amples that illustrate this, such as: (i) recording metrics
data as the user interacts with an application. The recorded
data can be sent to a database for future analysis of user
interaction patterns [1]; (ii) sending emails to inactive users
[3]; and (iii) automatically suggesting sales on e-commerce
systems based on the products that users usually buy. Soft-
ware agents are a strong candidate to provide these new
kinds of autonomous behavior required by web applications.

Nevertheless, the possibility of redesigning existing systems
as multi-agent systems or making big changes on their archi-
tecture is impracticable. Some works [18, 3] have proposed
architectures to incorporate software agents into web ap-
plications architecture. However, these approaches present
some deficiencies, such as: (i) they propose a complex so-
lution for the problem, which requires the understanding of
new concepts and techniques; or (ii) these approaches do not
provide an effective integration between the agents and the
application. In our work, we aim at proposing a simple and
efficient way to integrate agents and existing web applica-
tions in order to provide autonomous behavior for them.

In this work, we present an exploratory study of incorporat-
ing autonomous behavior into web based applications. We
have developed two case studies in which traditional web-
based systems structured according to the Layer architec-
tural pattern [8] are extended to adequate new autonomous
functionalities to their architecture by means of the agent
technology. The first one is the ExpertCommittee, a confer-
ence management system for the web domain. The second

one is the OLIS, a system that provides different services to
the user, such as calendar and events announcement. We
then discuss several challenges we faced during the addition
of software agents to the web applications, and, as a con-
sequence of the development experience of our case studies,
we also propose an architectural pattern to integrate web
applications and software agents.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present the two case studies that guided our re-
search. Section 3 discusses design and implementation issues
found when integrating software agents into web applica-
tions. The architectural pattern that emerged from our case
studies is also presented in this section. Some works related
to the integration between web applications and software
agents are described in Section 4. Finally, the conclusions
and directions for future works are presented in Section 5.

2. EXTENDING WEB-BASED SYSTEMS: AN

EXPLORATORY STUDY

Our research started with the development of two case stud-
ies to investigate the challenges related to the addition of
autonomous behavior into web-based applications by means
of agent technology. Both case studies are presented in this
section. Each of them represents a traditional web system
structured in layers, in which specific autonomous behavior
was added with the aim of automate (or semi-automate) ex-
isting system functionalities. Section 2.1 presents the Ex-
pertCommittee, a conference management system, which
was evolved to automate some user tasks. Section 2.2 details
the other case study, the OLIS, a web application that pro-
vides some services to the user, such as calendar, on which
we added new autonomous behavior features, e.g. automatic
detection of event conflicts.

2.1 ExpertCommiittee Case Study

The ExpertCommittee (EC) [14, 15] is a conference man-
agement system for the web domain developed to support
the paper submission and reviewing processes from confer-
ences. The EC system provides functionalities to support
the complete process of conference management, such as:
(i) create conferences; (ii) define conference basic data, com-
mittee members, areas of interest and deadlines; (iii) choose
areas of interest; (iv) submit paper; (v) assign papers to be
reviewed; (vi) accept/reject to review a paper; (vii) delegate
the paper review to an additional reviewer; (viii) review pa-
per; (ix) accept / reject paper; (x) notify authors about the
paper review; and (xi) submit camera ready. Each of these
functionalities can be executed by an appropriate user type
of the system, such as, conference chair, program committee
members, authors and reviewers.

The EC web-based system was structured according to the
Layer architectural pattern [2, 8] and is composed of the fol-
lowing components/layers: (i) GUI - this layer is responsible
to process the web requests submitted by the system users.
It was implemented using the Struts® framework; (ii) Busi-
ness - is responsible to structure and organize the business
services provided by the EC system. The transaction man-
agement of the business services was implemented using the

"http:/ /struts.apache.org

mechanisms provided by the Spring® framework; and (iii)
Data - aggregates the classes of database access of the sys-
tem, which was implemented using the Data Access Object
(DAO) design pattern. The Hibernate® framework was used
to make persistent the objects in a MySQL* database.

Figure 1 illustrates the architecture of the EC web-based
system and highlights the base architecture. This implemen-
tation corresponds to the first version of the EC. It already
provides all the functionalities necessary to manage the con-
ference process. However, there are some tasks in the EC
that could be automated, such as automatically distribut-
ing the submitted papers of a conference to the committee
members, instead of the chair making it manually. Thus,
we evolved the system, adding autonomous behavior to it.
We consider autonomous behavior actions that the system
automatically performs and previously needed human inter-
vention. The introduction of autonomous behavior in the
original system was accomplished using multi-agent system
technology, such as agents, roles and their associate behav-
iors. Next section details how the software agents were in-
troduced in the ExpertCommittee core architecture.

2.1.1 Automating User Tasks in EC

The EC system was evolved to incorporate new functional-
ities that reduce the user effort to manage the conference.
These functionalities are: (i) automatic paper distribution
- papers are automatically distributed among the commit-
tee members to be reviewed, according to some predefined
rules; (ii) task management - the system controls the pend-
ing tasks of the user, and the ones that he/she already done;
(iii) deadline monitoring - the conference deadlines are mon-
itored, and the system takes the appropriate actions when
the deadline expires or is about to expire; (iv) user notifica-
tions - the system sends notifications to the user about the
conference status; (v) conference suggestion - the authors of
submitted papers receive suggestions of conferences that are
related to the conference that they submitted the paper.

Software agents were implemented into the EC architecture
to address these new autonomous behavior functionalities.
The architecture of the new version of the EC is illustrated
in Figure 1. The JADE® framework was used as the base
platform to implement our agents. These agents are respon-
sible for monitoring the execution of different functionalities
of the EC in order to trigger new actions related to the
autonomous behavior functionalities from the system. The
integration between the original web based system and these
new agents comprises a multi-agent system. Details about
each agent that are part of the system are listed below:

Environment Agent. This agent monitors the EC sys-
tem by observing the execution of specific business services.
These monitored events of the EC system represent the en-
vironment in which the user agents are situated. Each user
agent is specified to perceive changes in the environment
and make actions according to them. When the environ-
ment agent is initialized, it registers itself as an observer of

*http://www.springframework.org)/.
3http://www.hibernate.org/.
“http://www.mysql.org/.
®http://jade.tilab.com/.

class EC Arohieoture
Legend:

O GUI Layer
[J Business Layer
[] Data Layer

DispatchAction]
BaseAction

e

<intedfaces |

<ccseves| Observer

[| i | s e p—
i v v 7 i

e Stk [oh—rv-ms-mn-l

dintertsces dintertaces | || cintertacas

B =T
4 4 1 B
I.*
_‘_l

o

e e N

aT e | e peadinengent R

RevienoA TeskoAO ccommunicaies ¥
1 " ;
1 24

T B

lAssignPap«sAcn.m| ldeWap«Achon|l TaskAction J I Observable |
1

=
=

I
I
1
I
I
I
|

Core Architecture

Figure 1: The ExpertCommittee Architecture.

the services that compose the Business layer. These services
are observable objects that allow the observation of their ac-
tions. That means that, for each call of the system business
methods, the services not only execute the requested meth-
ods, but they also notify their respective observers. The
only observer in our implementation is the EnvironmentA-
gent, whose aim is to notify the other agents of the system
about the changes;

User Data Agent. This agent receives notifications when
new users are created in the database. When it happens,
it creates a new user agent that will be the representation
of the user in the system. The initial execution of the user
data agent demands the creation of a user agent for each
user already stored in the database.

User Agent. Each user stored in the system has an agent
that represents him/her in the system. This is the au-
tonomous behavior, agents performing actions that the users
should do. The user agent was designed in such a way that
it can dynamically incorporate new roles. Each agent role
performs specific actions according to the role that the user
plays in the conference, such as chair, coordinator and au-
thor. An example of autonomous behavior is when the paper
submission deadline expires and the user agent in the chair
role will automatically distribute the papers to the commit-
tee members. Besides this example, most of the user agents
are responsible: (i) for analyzing and discovering pending
tasks for user agents based on the roles the users play in the
system; and (ii) for asking the notifier agent to send email
notifications.

Deadline Agent. This agent is responsible for monitoring
the conference deadlines. This monitoring serves basically
two purposes: (i) to notify the user agents when a deadline
is nearly expiring; and (ii) to notify the user agents when a
deadline has already expired. It also triggers some actions in
the user agents, by sending messages informing them about

the deadlines that expired.

Task Agent. This agent is responsible for managing the
user tasks. It receives requests for creating, removing and
setting the execution date of tasks. The requests are made
by the user agents.

Notifier Agent. This agent receives requests from other
agents to send messages to the system users. In the current
implementation, it sends these messages through email.

Thus, the integration between the web architecture and the
agents in the EC system was accomplished by introducing
an agent called Environment Agent. This agent receives no-
tifications of the business layer about the relevant operations
executed by system users and broadcasts them to the other
agents. Then, the agents change their behavior according to
the information that they received and was interesting for
them. The Observer pattern [9] was used to keep the Envi-
ronment Agent and the business services loosely coupled. A
class called ObservableService extends the Observer class
(see Figure 1). All the services that compose the business
layer extend this class, which provides some common meth-
ods to all of them, besides inheriting the methods that are
part of the Observer pattern.

2.2 OLIS Case Study

The OLIS (OnLine Intelligent Services) case study is a
web application that can provide several personal services
to users. The first version of the system is composed mainly
by two services: the Events Announcement and the Calen-
dar Services. However, the OLIS was designed in such a
way that the system can be evolved to incorporate new ser-
vices without interfere the existing ones. The system has
different flavors according to the type of event that it man-
ages: generic events, academic events and travel events. In
this paper, we detail the OLIS system version with travel
events.

The Events Announcement service allows the user to an-
nounce events to other system users through an events board.
The events have some common basic attributes, such as -
subject, description, location, city, start and end dates, fre-
quency that it happens - and some specific attributes, which
are, in travel events, the place type and the activities that
can be done in the event. The Calendar service lets the user
to schedule events in his/her calendar. Besides the informa-
tion of the events published in the events board, calendar
events have a list of users that participate of it. Announced
events can be imported to the users’ calendar.

Figure 2 presents the OLIS architecture, with a dashed line
delimitating which components belong to the core architec-
ture. It can be noticed that it is very similar to the EC
core architecture. The OLIS web-based system was also
structured according to the Layer architectural pattern [8],
which is the pattern usually used to structure web applica-
tions. The layers that compose the architecture are exactly
the same of the EC - GUI, Business and Data layers. The
responsibilities attributed to each one of the layers were also
the same. The only difference is that we used different web
application frameworks in the GUI Layer, in EC we used the
first version of the Struts framework, and Struts 2 in OLIS.

clsss OLIS Architecturs 7

weatnerSenice
|
|

i
e — Legend:
pnivid B Observatietusinesssenvice [[1 GUI Layer
=== | yi] Business Layer
: ; s [Data Layer
/7 A} \7\| ObservableBusinessServicelmpl| “=5t| o S e
- R EventsBoardAction ‘.1“:::::::' A -

-calendarSarvice |

i

wintarfaoes

sintertaces

Agent «Bgents

ARl Manager
EnvironmentAgent

zoresteis

«agents
User

asgants

User

aroles

:EventParticipant

& wrclen
EventScheduler

:EventScheduler

EventAnnouncer

wrales
:EventClient

wroles

EventClient

arcles
EvenlAnnouncer

i) 1T i
Lc:lmurs.mmﬂl |1 lu p ! -
L I |
3 - H
-sventsBosrcDAC] :
GenencDAD Genenc0AQ ! :
sinietsces sinmerisces sintedaces I
CalendarEventDAQ EveniDAC EventsEBoardDAD 1 1 |
| cmmuricates
T ; ; 1 V R
GenedcDACHIbamate | |GenencDACHIbemaste GenercDAOHIbem ats
CalandarEventDADH EventDAC DACH Bernalg) iosiis

Core Architecture |

Figure 2: The OLIS Architecture.

After developing the first version of OLIS web application,
we have identified that new autonomous behavior features
could be introduced to automatize some tasks in the system.
An example is to store user preferences about travel events
and then automatically suggest users about new events an-
nounced, according to their preferences. Another improve-
ment in the application is the addition of new features that
retrieve information processed by software agents, such as
weather information. So, we evolved the OLIS application,
adding new features to it, which take advantage of the agents
technology. We present the features that were added to
OLIS, and how we developed them in the next section.

2.2.1 Adding Intelligent Services to OLIS

The services that compose OLIS application are presented
in several applications. They provide the typical operations
- create, read, update and delete - to the user manage infor-
mation in the system. We have evolved these services, aggre-
gating autonomous behavior, to process the data stored in
the system, analyze it, take conclusions from it and perform
actions that were previously done manually. The services
become intelligent services.

The new features incorporated to the OLIS first version are:
(i) Events reminder - the user configures how many minutes
he/she wants to be reminded before the events, and the sys-
tem sends notifications to the user about events that are
about to begin; (ii) Events scheduler - when an user adds a
new calendar event that involves more participants, the sys-
tem checks the other participants’ schedule to verify if the
event conflicts with other events. If so, the system suggests
a new date for the calendar event that is appropriate ac-
cording to the participants schedule; (iii) Events Suggester
- when a new event is announced, the system automatically
recommends the event after checking if it is interesting to the
users based on their preferences. The system also checks if

the weather is going to be appropriate according to the place
type where the event is going to take place; (iv) Weather -
this is a new user service. It provides information about
the current weather conditions and the forecast of a loca-
tion. This service is also used by the system to recommend
announced travel events.

The evolution of the OLIS web application was accomplished
by the introduction of software agents and agent roles on
the architecture. Figure 2 shows the architecture integrated
with the agents. The implementation of this version of
the system is a hybrid agent architecture: the Environment
agent and the Facade agent were implemented with JADE,
and the other agents with Jadex®. JADE agents are Java
classes that are subclasses of the Agent class from the JADE
platform. Thus, we could add new methods to the agent
classes to provide access to the objects of the system by
passing the agent reference. However, Jadex implements
the BDI (belief-desire-intention) model, specifying agents in
an XML file in terms of their believes, goals and plans, and
it provides a reasoning engine, which is necessary for the
other agents of the system. Next we describe each one of
the OLIS agents:

Environment Agent. This agent receives notifications
about the execution of business operations and it propa-
gates them to the other agents of the system. Its behavior
is similar to the Environment agent from EC.

Manager Agent. This agent is responsible for creating
new user agents when a new user is inserted in the database.
It also starts an user agent for each user already stored in
the database during the application start up. It is equivalent

Shttp://vsis-www.informatik.uni-
hamburg.de/projects/jadex/

to the User Data agent from EC.

Facade Agent. This agent is the access point of the web
application to get information from the agents. It hides the
other system agents from application, so that the applica-
tion only needs to know about the Facade agent to get the
information from the agents.

Weather Agent. This agent provides the weather infor-
mation. It looks for the current weather conditions and the
forecast of a specific location.

User Agent. Each user of the system has an user agent
that represents him/her. Each User agent has five different
roles: (i) Ewent Reminder Role - reminds the user about
events that are going to begin; (ii) Event Scheduler Role -
invites other users to a calendar event and finds a time for
the event that is compatible with the participants’ schedule;
(iii) Event Participant Role - accepts or rejects an invitation
to participate of an event and, in case of reject, provides a
time that is appropriate for the user according to his/her
schedule; (iv) Event Announcer Role - announces new events
to the other user agents; (v) Event Client Role - checks
if the event announced is interesting according to the user
preferences. This role also checks if the weather will be good
according to the place type, consulting the Weather agent.
Eventually, the user agents can access the business services
to perform changes in the data model.

3. DESIGN AND IMPLEMENTATION ISSUES

During the development of our case studies, we identified
some design and implementation issues when integrating the
existing web application and the software agents. In this sec-
tion, we present and discuss some relevant questions about
this integration and we also propose an architectural pat-
tern for incorporating autonomous behavior into web appli-
cations. We aimed at proposing a solution that: (i) is quite
simple to be implemented; and (ii) have a minimum impact
in design and implementation of existing web systems.

3.1 Integrating Agents Into Web-Based Appli-

cations

Software agents are situated in an environment, in which
they are able to perceive its events in order to take actions
in a timely fashion according to changes that occur in the
environment [19]. When extending the web systems to in-
corporate the autonomous behavior, the first problem that
we had to solve was how the software agents could perceive
changes in the environment. We consider our environment
the data model with its current data information. Changes
on this model happen as a consequence of the user interac-
tions with the system. So each time the user performs an
action that changes the data model, the agents should de-
tect it or be notified about this fact, and then they take the
appropriate actions. In BDI agents, we can think the data
model, or a part of it, as the believes of the agents, and the
agents should perceive when their believes change.

A possible solution to this problem is that can consult the
database in periodic times, as it is proposed in [3]. How-
ever, this solution can cause a big overhead in the system
if it is done in a short period, or changes will be perceived

with a large delay if it is done in a large period, which can
cause undesired situations, such as missing a change if more
than one change happen in the same data. Therefore, we
used the Observer pattern to let the business services no-
tify the agents about operations they execute. This allows
the agents process information only when something actu-
ally changed in the environment. Besides receiving informa-
tion, agents must have an access to the business services to
perform changes in the data model. This is easy to be done
through method invocation to the interfaces provided by the
business services.

Another common situation is that system functionalities
may retrieve information from the agents. Software agents
exchange messages, and objects call methods; so it was a
problem for an object from the system to retrieve informa-
tion from the agents. Usually, the agent platforms do not
provide an easy way for objects from the system interacting
with agents. For example, in Jadex, the agents are specified
in XML files, and an object is not able to access them and
does not know their interface to call a specific method. How-
ever, this is something desired, because agents can provide
information that needs reasoning and learning to be pro-
duced, e.g. the weather agent provides information about
the weather in OLIS case study. Furthermore, it is com-
mon that it takes some time to get information from the
agents, as this can require a lot of processing and messages
exchanges. Thus, delayed answers should also be consid-
ered. In OLIS, we developed the Facade agent to let the
objects of the web application access and get information
from the agents. The Facade agent was implemented with
JADE, so it is was designed as a common Java class that
provides an interface to objects access information of interest
from the system agents. We provided both synchronous and
asynchronous methods; thus the object can make a request
providing a callback function and continue its processing,
while it is waiting for the answer for its request. The Fa-
cade agent is a singleton instance; therefore its reference can
also be easily retrieved.

3.2 Improving Modularization using Aspect-

Oriented Programming

An important characteristic that was taken into consider-
ation when integrating the web application and the agents
was to keep them loosely coupled in order to make possible
to easily insert and remove the software agents from the web
application. It also helps to incorporate the autonomous be-
havior (agents), with a minimum impact into an existing web
application and it improves the reusability and maintenance
of the system.

The implementation of the Environment agent using the Ob-
server pattern allowed the agents perceiving changes in the
environment. Moreover, the agents can be easily (un)plugged
to the system. We can remove the agents from the applica-
tion without impacting its normal operation. The Observer
pattern provides an abstract coupling between the subject
and the observer; the services of the Business layer does not
know who the concrete observers are. Furthermore, there
are some application program interfaces (APIs), such as the
Java API, that already provides the Observable class and
the Observer interface.

The implementation of the Observer pattern using aspect-
oriented programming could make the addition of agents to
the web application even less intrusive. Aspect-oriented pro-
gramming (AOP) [12] enables to separate code that imple-
ments crosscutting concerns and modularize it into aspects.
It provides mechanisms and techniques to compose crosscut-
ting behaviors into the desired operations and classes during
compile-time and even during execution. The source code
for operations and classes can be free of crosscutting con-
cerns and therefore easier to understand and maintain. The
code of the Observer pattern presents an invasive nature,
resulting on a scattered and tangled code among several
classes. Therefore, this leads the pattern to “disappear into
the code”, and it also bring difficulties to the understanding,
maintenance and documentation of the pattern, and conse-
quently of the application.

We are currently exploring the refactoring of some exist-
ing autonomous behavior functionalities from the EC and
OLIS systems using AOP. In the current perspective, aspects
have been useful in the implementation of these systems to
not only observe the execution of business services, but also
in the modularization of existing agency fine-grained fea-
tures that are encountered spread and tangled along differ-
ent classes from Agent layer [14, 15].

3.3 Transaction Management and Performance

Besides the questions already presented, there are two im-
portant implementation details that should be mentioned.
The first one is the transaction management. In typical
web applications, the execution of each business methods is
under a transaction. Thus, if an error occurs during the
method execution, the operations that were already exe-
cuted are undone. With transaction management, the in-
formation stored in the database cannot achieve an incon-
sistent state. The design issue is if the notification to the
observer should be done inside or outside the transaction
scope. If the business methods should be committed even
though an error occurs during the notification to the agents,
this notification should be out of the transaction or the ex-
ception thrown should be caught and treated. If the business
method execution must rollback when something wrong hap-
pens during the notification to the agents, the notification
must be inside the transaction.

Another design and implementation issue is related to the
system performance. The inclusion of notifications on the
business methods implies an overhead to the system, in par-
ticular when an entity is deleted, because its state is read
and kept in memory before its deletion. Though, only the
methods that impact in the behaviors of the agents should
propagate its execution. Usually, methods that only retrieve
information from the data model do not need to notify the
observers.

3.4 Towards a Web-MAS Architectural Pat-

tern
In this section, we present the Web-MAS architectural pat-
tern. This pattern was derived from our case studies based
on the common elements identified when integrating the web
based systems and their respective software agents. The
proposed pattern provides a general structure to add au-

tonomous behavior to existing web applications using agent
technology. This extension has a minimum impact on the
architecture of web-based systems. Moreover, the agents can
be easily removed after being introduced on the system.

The pattern addresses applications that follow the typical
web application architecture, i.e. the Layer architectural
pattern [2]. Although, it would also be adapted to con-
sider other alternative implementations of web-based sys-
tems. This pattern helps to structure applications that can
be decomposed into groups of subtasks in which each group
of subtasks is at a particular level of abstraction. The pro-
posed solution is composed of these components: (i) the
presentation, business and data layers, which comprise the
web application; (ii) the agents layer; (iii) the business layer
monitor; (iv) and the agents layer facade. The structure
of these components is depicted in the Figure 3. Next we
describe each one of these components:

| command A \j [command B \j
| Command C U } Command D |j
1
\'2
| SevicolA U ‘ e E ﬂ [F _>{ Environmem'/-\gent
V
Service C r ©. ’©@;©'©
——— SieE | P —— ¢ @
e Dl PECNEY.
" , »
| DAOCA ﬂ | DAOB U Legend:
U U [0 Presentation Layer © Agent
[baoc [_baob [Business Layer ->Communication
T [Data Layer
I Agents Layer
_ ; ;
[Business Layer Monitor
Database M Agents Layer Facade

Figure 3: WEB-MAS Architectural Pattern.

Presentation Layer. This layer can also be called Graph-
ical User Interface (GUI) layer. The top-most level of
the application is the user interface. The main func-
tion of the interface is to translate tasks and results
to something the user can understand. Usually, this
layer follows the model-view-controller (MVC) pattern
[8]. This pattern considers three roles: (i) model - an
object that represents some information about the do-
main; (ii) view - represents the display of the model
in the user interface; and (iii) controller - takes user
input, manipulates the model and causes the view to
update appropriately. Commonly, Web Application
Frameworks (WAF) are used to implement this layer;

Business Layer. This layer is also known as Logic layer.
It coordinates the application, processes commands,
makes logical decisions and evaluations, and performs
calculations. It also moves and processes data between
the two surrounding layers. Typically, there is trans-
action control in this layer;

Data Layer. In this layer, the information is stored and is
retrieved from a database or a file system. It is then
passed back to the Business layer for processing, and
then eventually back to the user. The information is

represented in a data model, on which there are objects
and relationships among them;

Agents Layer. This component is responsible for the au-
tonomous behavior de facto. It is composed by soft-
ware agents. The agents provide intelligent services
and automate tasks that were previously done directly
by users. Instead of being simple objects with at-
tributes and methods, they have believes, goals and
plans. The agents receive messages from the Envi-
ronment agent about the execution processes that this
agent detects by monitoring the services of the Busi-
ness Layer. According to the messages received, the
agents take appropriate actions and can also perform
changes in the data model by using the business ser-
vices;

Business Layer Monitor. This component is responsible
for monitoring the business operations from the web
application. The business operations to be monitored
are the ones that are related to the autonomous be-
havior. The Business Layer Monitor aggregates the
Environment agent, which receives notifications about
the operations executed in the Business layer and prop-
agates them to the other agents;

Agents Layer Facade. This component is the access point
of the web application to the Agents Layer. Besides
the information that is stored in the data model, agents
can also generate information through some processing
and exchanging messages with other agents. Then,
this facade provides an interface for the business ser-
vices get information from the other agents of the sys-
tem. This component is composed by the Facade agent,
which receives a request from a business service, for-
ward it to the appropriate agent and pass the result
back to the service. When this agent starts up, it reg-
isters itself as a singleton instance. Then the busi-
ness services can access this agent and make a re-
quest. There are three ways of communication: (i)
Synchronous - the business service calls the Facade
agent and waits for the response; (ii) Asynchronous
with pooling - the business service calls the Facade
agent, continues its processing, and periodically checks
if the response arrived; and (iii) Asynchronous with
callback approach - the business service calls the Fa-
cade agent, continue its processing, but it is notified
through a callback function, which is passed as param-
eter when the Facade agent was called.

The communication between the business services and the
Environment agent is accomplished by means of the intro-
duction of the Observer design pattern [9]. The intent of this
pattern is to define a one-to-many dependency between ob-
jects so that when one object performs an action or changes
state, all its dependents are notified automatically. By the
use of this pattern, we keep a loose coupling between the
application and the Agents layer. In the Observer pattern,
the concrete subject is the object that sends a notification to
its observers when its state changes or performs an action;
thus all the services that compose the Business layer are con-
crete subjects. They must implement the Observable inter-
face, which allows the observation of their actions. For each

call of the business methods, the services not only execute
the requested method, but they also notify their respective
observers. The concrete observer implements an updating
interface to receive notifications from the subject. In our ar-
chitecture, there is only one concrete observer, which is the
Environment agent. This agent registers itself as an observer
of the services that compose the Business layer when it is
initialized. When some action is performed in the Business
layer, the Environment agent is notified about this event and
it broadcasts the event to all other agents of the system.

3.5 Automatic Derivation of Applications

Our case studies are composed of (i) a core - that repre-
sents the existing web application; and (ii) agency features
- which are extensions to the web applications that add new
autonomous behavior functionalities to the system. We are
currently investigating the different kinds of variability re-
lated to the software agents, and how to better modular-
ize them, enabling an automatic product customization. In
particular, we are exploring how existing software product
lines techniques [14, 15, 13] can: (i) improve the modu-
larization of the different features/services available in the
system; and (ii) help the automatic customization of these
features/services.

Software Product Lines [7, 17] (SPL) is a new trend in the
software reuse [16], which addresses the development of ap-
plications that share common functionalities and maintain
specific functionalities that vary according to specific sys-
tems being considered. We are exploring the use of the SPL
technology to better modularize the features and/or services
of web applications. This allows an easy customization of
different versions of the system. Furthermore, the products
can be automatically derived by means of model-based tools:
software factories [10], GenArch [5, 4, 6], pure::variants’.

4. RELATED WORK

There are some approaches in the literature that address the
challenge of adding software agents on existing web applica-
tions. Stroulia & Hatch [18] propose a software framework
called TaMeX, which supports the development of intelligent
multi-agent applications that integrate existing web-based
applications offering related services in a common domain.
The architecture of the framework is based on an extensible
integration-specification language and a run-time environ-
ment consisting of reflective intelligent agents able to inter-
pret and execute integration specifications, defined in the
language. The TaMeX architecture is a distributed multi-
agent architecture consisting of two types of agents: task
agents, which are responsible for interacting with the end
users; and application wrappers, which are responsible for
executing existing web applications and translating between
the domain model of the integrated application and the in-
dividual domain models of the wrapped applications. Our
work also proposes the addition of software agents on ex-
isting web applications. However, we aimed at proposing a
simple solution for that founded on existing object-oriented
design techniques and that integrates with current adopted
web technologies. On the other hand, the use of the TaMeX
framework implies learning of a new programming language

"http://www.pure-systems.com/

and specific methods. Besides, it obligates the use of its
language to implement the software agents.

Choy et al propose in [3] the use of software agents to make
the communication in a distance learning community more
effective. They focus on the communication between teach-
ers and students. Their software agents are designed to work
on behalf of teachers, assisting them in communicating more
effectively and closely with students, saving lot of time by
delegating routine jobs. Basically, the software agents mon-
itor the system and send alert e-mails in specific situations.
The main elements that were introduced in the web appli-
cation are: (i) Schedule Control Class, which controls the
agent’s life and behavior; (ii) Job Listener Classes that gen-
erate notifications when exceptional events occur; (iii) Data
Retrieval Class, which retrieves all required information at
once for the Job Central Processing Class; and (iv) Job Cen-
tral Processing Class, which hosts the criteria to generate e-
mail alerts and sends them. This work does not actually in-
tegrate agents into the web application. The agents run in a
parallel way with the system and consult the same database
that is manipulated by the web application. Agents do not
communicate with the rest of the system. Moreover, it does
not allow the web application to access information directly
from the agents. Both situations are addressed by our work.

S. CONCLUSIONS

This paper presented an exploratory study about the incor-
poration of autonomous behavior into existing web appli-
cations. This addition is achieved by the introduction of
software agents in existing web applications. We presented
two case studies that guided our research. The first case
study was the ExpertCommittee, a conference management
system that provides the functionalities to help users with
the paper submission and reviewing processes. The second
case study, OLIS, is a system the provides different services
to the user, such as a calendar service. Both case studies are
typical web applications that we evolved to incorporate new
features, which automate tasks that previously needed user
information and generate information that needs a reasoning
engine.

The paper also showed the issues that we found during the
case studies development: (i) how the software agents per-
cept changes in the data model; and (ii) how the business
service can retrieve information from the agents. It was
presented a preliminary version of an architectural pattern
derived from our case studies to address these design is-
sues. The pattern proposes the following main elements: (i)
a Business Layer Monitor, presented by the Environment
agent, which is an observer of the business services that no-
tifies system agents about changes in the system; and (i) the
Agents Layer Facade, composed by the Facade agent, which
is the web application access point to get information from
the other agents. Following the pattern guidelines, a web
system is structured in such a way that agents can be easily
inserted and removed from the system.

We are currently working in the development of other case
studies to validate the Web-MAS architectural pattern and
check if our pattern is sufficiently generic to be applied to
other systems. We are also implementing our case studies us-

ing aspect-oriented programming, to allow the (un)pluggability

of the agents from the web applications.

6.
[

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]
(17]

(18]

(19]

REFERENCES

Adobe. Adobe - flex 3, 2008.
http://www.adobe.com/products/flex/.

F. Buschmann, R. Meunier, H. Rohnert,

P. Sommerlad, M. Stal, P. Sommerlad, and M. Stal.
Pattern-Oriented Software Architecture: A System of
Patterns. John Wiley Sons, 1996.

S.-0O. Choy, S.-C. Ng, and Y.-C. Tsang. Building
software agents to assist teaching in distance learning
environments. In ICALT 05, pages 230232,
Washington, DC, USA, 2005. IEEE Computer Society.
E. Cirilo, U. Kulesza, R. Coelho, C. Lucena, and

A. von Staa. Integrating Component and Product
Lines Technologies. In ICSR 2008, China, 2008.

E. Cirilo, U. Kulesza, and C. Lucena. GenArch: A
Model-Based Product Derivation Tool. In SBCARS
2007, pages 17-24, Campinas, Brazil, Agosto 2007.

E. Cirilo, U. Kulesza, and C. Lucena. A Product
Derivation Tool Based on Model-Driven Techniques
and Annotations. Journal of Universal Computer
Science, 14:1344-1367, 2008.

P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, Boston, MA,
USA, 2002.

M. Fowler. Patterns of Enterprise Application
Architecture. Addison-Wesley Professional, November
2002.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley, 1995.

J. Greenfield, K. Short, S. Cook, and S. Kent.
Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools. John Wiley
and Sons, 2004.

N. R. Jennings. An agent-based approach for building
complex software systems. Commun. ACM,
44(4):35-41, 2001.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In ECOOP’97, volume
1241, pages 220-242, Berlin, Heidelberg, and New
York, June 1997. Springer-Verlag.

C. Nunes, U. Kulesza, C. Sant’Anna, I. Nunes, and
C. Lucena. On the modularity assessment of
aspect-oriented multi-agent systems product lines: a
quantitative study. In SBCARS 2008, Porto Alegre,
Brazil, 2008.

I. Nunes, C. Nunes, U. Kulesza, and C. Lucena.
Developing and evolving a multi-agent system product
line: An exploratory study. In AOSE 2008, Estoril,
Portugal, 2008.

I. Nunes, C. Nunes, U. Kulesza, and C. Lucena.
Documenting and modeling multi-agent systems
product lines. In SEKFE 2008, Redwood City, San
Francisco Bay, USA, 2008.

D. L. Parnas. On the design and development of
program families. pages 193—213, 2001.

K. Pohl, G. Béckle, and F. J. van der Linden.
Software Product Line Engineering: Foundations,
Principles and Techniques. Springer-Verlag, New
York,USA, 2005.

E. Stroulia and M. P. Hatch. An intelligent-agent
architecture for flexible service integration on the web.
IEEE Transactions on Systems, Man, and
Cybernetics, Part C, 33(4):468-479, 2003.

M. Wooldridge and P. Ciancarini. Agent-Oriented
Software Engineering: The State of the Art. In AOSE
2000, volume 1957, pages 1-28. 2000.

