
An End-user Domain-specific Model to Drive Dynamic User Agents Adaptations

Ingrid Nunes, Simone D.J. Barbosa, and Carlos J.P. de Lucena

Pontifical Catholic University of Rio de Janeiro (PUC-Rio) – Rio de Janeiro – Brazil

E-mail: {ionunes,simone,lucena}@inf.puc-rio.br

Abstract

Modeling automated user tasks based on agent-oriented
approaches is a promising but challenging task. Personal-
ized user agents have been investigated as a potential way of
addressing this issue. Most of recent research work has fo-
cused on learning, eliciting and reasoning about user pref-
erences and profiles. In this paper, our goal is to deal with
the engineering of such systems, barely discussed in the lit-
erature. In this context, we present a high-level domain-
specific model whose aim is to give users the power to cus-
tomize and dynamically adapt their user agents. In addi-
tion, we propose a general architecture for developing user-
customizable agent-based systems.

1. Introduction

Many modern computer systems are providing assistance

to several of our usual tasks, by incorporating features with

a proactive and autonomous behavior. Typical examples in-

clude product recommendations based on our purchase his-

tory and generation of playlists based on songs we listen.

These systems are increasingly becoming part of our every-

day life. A generalized and ambitious idea underlying such

systems is the personalized user agents [9], which are per-

sonal assistants acting on the users’ behalf. Even though

significant research effort has been invested on developing

user agents, we are far from their massive adoption.

Schiaffino & Amandi [12] presented an empirical study

that gives a solid basis for explaining this scenario. They

claim the “human-computer interaction people have criti-

cized agent-based methodologies that seem to produce sys-

tems not easily accepted by the user: one of the main reasons

is the autonomy of the agents that can cause a loss of control

by the user.” Their study showed that different users need

different kinds of user agents. In addition, a large group of

users is willing to adopt user agents only if they know ex-

actly what the agent is going to do.

Our research addresses this group of users. In this pa-

per we demonstrate an approach to empower users with

a high-level domain-specific language that allows them to

dynamically program and personalize their agents, as op-

posed to inference models that might reach the wrong con-

clusions about user preferences and cause agents to take in-

appropriate actions. Our approach distinguishes user con-
figurations from preferences, which we collectively refer

to as customizations. Configurations are direct and deter-

minant interventions that users perform in a system, such

as adding/removing services or enabling optional features.

They can be related to environment restrictions, e.g. a de-

vice configuration. Preferences represent information about

the users’ values that influence their decision making, and

thus can be used as resources in agent reasoning processes.

They typically indicate how user rates certain options better

than others in certain contexts. The present work evolved

from our approach for building customized service-oriented

user agents [11], which only dealt with user configurations

and it did not address dynamic adaptations, i.e. our previous

user agents did not evolve at runtime.

Our goal in this paper is twofold. We present a Domain-
specific Model (DSM) to model user preferences, which pro-

vides the necessary vocabulary to build an end-user prefer-

ences language. Exiting representation models of user pref-

erences force users to express their preferences in a particu-

lar way. Consequently, these works create the need for elic-

itation techniques to interpret answers to questions and in-

directly build the user model. The language that our DSM

creates allows users to express different kinds of preference

statements, creating a vocabulary that is very close to natu-

ral language. The proposed DSM is a metamodel that may

be instantiated to build different applications.

We also show how this language is used in broader con-

text, which is an architecture to build user-customizable
applications, composed of user agents that are dynami-

cally adapted based on a user model that follows our meta-

model. We have taken into account software engineering

issues identified as current practices to develop applications

based on user models. In this sense, we also contribute with

an analysis of existing mechanisms to implement user cus-

tomizations, which may result in low-quality software ar-

chitectures. Good (modular, stable, ...) architectures are

essential to produce higher quality software which is easier

509

to maintain. Otherwise, software architectures may degen-

erate over time, making their maintenance a hard task, by

increasing costs with refactorings.

This paper is organized as follows. In Section 2, we

describe our user-driven software architecture. Section 3

presents our DSM, followed by Section 4, which evaluates

our metamodel, showing its generality when used across dif-

ferent domains. Section 5 presents related work. Finally,

Section 6 concludes this paper.

2. A User-driven Software Architecture

Our research on developing personalized user agents is

driven by a reference architecture that allows to adapt agents

based on an end-user’s DSM. In this section, we first present

usual software engineering practices adopted to develop

user-model based systems. They motivate the structure of

our reference architecture, which is also detailed.

2.1. Software Engineering Practices to De-
velop User Agents

An essential characteristic of user agents is that they store

information specific to each user. This is typically imple-

mented either using: (i) a user model, which stores user in-

formation in a single location and is checked whenever a

user-dependent action is performed; and (ii) control vari-

ables, which are inserted in the code to reflect user cus-

tomizations and used to make some decisions that indicate

to an agent the right course of actions it should take. Both

solutions are essentially the same, with the difference that

the first solution concentrates all the user-specific data. Even

though these solutions produce the desired behavior, they

have drawbacks from a software engineering perspective.

Concentrating all user customizations in a single com-

ponent creates a high coupling between this component

and other system components. In addition, changes in this

unique component may imply a lot of little changes applied

to a lot of different classes. This characterizes the Shotgun

Surgery bad code smell [6]. Moreover, in both solutions, a

control variable will be used – in (i), it is retrieved from the

Figure 1. Modularization Approaches.

user model – which is a program variable used to regulate

the flow of control of the program. These control variables,

i.e. user customizations, may be used in several system loca-

tions and are usually used in chained if or switch state-

ments scattered throughout the system. If a new clause is

added to the switch, all statements must be changed. This

is another bad code smell, the Switch Statement [6], and the

object-oriented notion of polymorphism gives you an ele-

gant way to deal with this problem.

Another software engineering issue related to user agents

is that user customizations may be seen as a concern in a

system that is spread all over the code. However, at the

same time, each customization is associated with different

services (also concerns) provided to users. Therefore, when

developing such system one has to choose the dimension

in which the software architecture will be modularized: in

terms of services (Figure 1(a)) or modularizing user settings

in a single model (Figure 1(b)). It can be seen that it is not

possible in either approach to modularize concerns in single

modules. In addition, without modularizing user customiza-

tions, as in Figure 1(a), they are buried inside the code, thus

making it difficult to understand them as a whole.

Based on these arguments, we claim that there is a need

for better software architectures to build personalized user

agents, taking into account good software engineering prac-

tices. However, dealing with variable traits that emerge from

user customization points is not a trivial task. These cus-

tomization points are spread all over the system architecture

and play different roles in agent architectures [5, 10]. If all

this information is contained in a single user model, we have

the problems discussed above and this model would aggre-

gate information related to different concerns of the system

(low cohesion among user model elements).

2.2. Detailing our Software Architecture

Our solution to the previously described issues is to pro-

vide a virtual separation of concerns [7]. The main idea is to

structure the user agent architecture in terms of services by

modularizing its variability as much as possible into agent

abstractions. We provide a virtual modularized view of user

customizations, as Figure 1(c) illustrates. Customizations

are not design abstractions, but they are implemented by

typical agent abstractions (goals, plans, etc.), i.e. they play

their specific roles in the agent architecture. The virtual user

model is a complementary view that provides a global view

of user customizations. This model uses a high-level end-

user language, and users are able to configure their agents

by means of this model. This section details our proposed

architecture, depicted in Figure 2, and describes the mecha-

nism that makes the virtual user model (henceforth referred

to as user model) work with agent architectures.

The User Agents module consists of agents that provide

different services for users, e.g. scheduling and trip plan-

510

Figure 2. Proposed Architecture.

ning. Their architecture supports variability related to dif-

ferent users, as well as provide mechanisms to reason about

preferences. These agents use services provided by a dis-

tributed environment (the Services cloud), and their knowl-

edge is based on the Domain Model, composed of enti-

ties shared by user agents and services, application-specific,

etc. The Security module addresses security and privacy is-

sues, because user agents may share information with other

user agents. This module aggregates policies that restrict

this communication, assuring that confidential information

is kept safety secured. Users access services provided by

user agents through the Applications Interface module.

The User Model contains user configurations and prefer-

ences expressed in a high-level language. They are present

in the user agents architecture but as design-level abstrac-

tions. Clearly, there is a connection from the User Model
and User Agents. This connection is stored in the form of

trace links, indicating how and where a customization is im-

plemented in a user agent(s). Adaptations are performed

at runtime and are accomplished based on the trace links

between the User Model and the User Agents architecture.

The Synchronizer is the module in charge of adapting User
Agents based on changes in the User Model. It is able to un-

derstand these trace links, and knows which transformation

must be performed in the User Agents based on changes in

the User Model. Therefore, the User Model drives adap-

tations in the User Agents. By means of the Configura-
tion module, users can directly manipulate the User Model,
which gives them the power to control and dynamically

modify user agents, using a high-level language. In addition,

changes in the User Model may be performed or suggested

by the Learning module, which monitors user actions to in-

fer possible changes in the User Model. This module has

a degree of autonomy parameter, so it may automatically

change the User Model, or just suggest changes to it, to be

approved by the end users.

3. A Metamodel for Building Application-
specific User Models

In this section, we present and detail our proposed

metamodel, whose aim is to allow to build application-

Figure 3. A Metamodel for Modeling User
Preferences (Part I).

specific user models, using domain-specific abstractions.

The metamodel provides concepts to represent user config-

urations and preferences. Our metamodel, which is an ex-

tension of the UML metamodel1, is depicted in Figures 3

and 4. Elements of the UML metamodel, e.g. Class and

Property, are either distinguished with a gray color in

diagrams or are referred in properties.

Before instantiating the metamodel to model user cus-

tomizations at runtime, it is necessary to build the Domain

Model (Section 2) at development time, for defining domain

abstractions that are referred to in the User Model. The Do-

main Model consists of: (i) an Ontology model; (ii) a Vari-

ability model; and (iii) a Preferences Definition model. The

Ontology model represents the set of concepts within the

domain and the relationships between those concepts. The

Variability model, in turn, allows modeling variable traits

within the domain, which are later used for defining user

configurations. The goal of the Variability model is to de-

scribe variation points and variants in the system, which can

be either optional or alternative. In addition, restrictions

may be defined in order to represent relationships between

variations. The Variability model is used to define the con-

figuration of the system in the User Model. This part of our

metamodel was explored in our previous work [11] and is

out of the scope of this paper. Therefore, we give this brief

introduction to the Variability model, but we refer the reader

to [11] for further details.

The part of our metamodel that is used in the Preferences

Definition model is presented in Figure 3. The purpose of

1http://www.omg.org/spec/UML/

511

Figure 4. A Metamodel for Modeling User Preferences (Part II).

this model is to define how users can express their prefer-

ences and about which elements of the Domain Model. Even

though it is desirable that users be able to express prefer-

ences in different ways, it is necessary to have agents that

can deal with them. For instance, if application agents can

deal only with quantitative preference statements, user pref-

erences expressed in a qualitative way will have no effect on

the system behavior.

Users can express different types of preference: (i)

Order (ORDER) – expresses an order relation between

two elements, allowing users to express “I prefer trains
to airplanes.” A set of instances of the Order pref-

erence comprises a partial order; (ii) Reference Value

(REFERENCE VALUE) – enables users to indicate one or

more preferred values for an element. It can be interpreted

as the user preference is a value on the order of the provided

value; (iii) Minimize/Maximaze (MIN MAX) – indicates that

the user preference is to minimize or maximize a certain el-

ement; (iv) Don’t Care (DONT CARE) – allows indicating a

set of elements the user does not care about, e.g. “I don’t
care if I travel with company A or B;” (v) Rating – allows

users rating an element. By defining a RatingDomain
for an element, users can rate this element with a value

that belongs to the specified domain. This domain can be

numeric (either continuous or discrete), with specified up-

per and lower bounds. In addition, an enumeration can be

specified, e.g. LOVE, LIKE, INDIFFERENT, DISLIKE and

HATE. Moreover, different domains can be specified for the

same element. Using Rating preferences, it is possible to

assign utility values to elements, or to express preference

statements; and (vi) Constraint (CONSTRAINT) – a partic-

ular preference type that establishes a hard constraint over

decisions, as opposed to the other preference types, used to

specify soft constraints. Constraints allows users to express

strong statements, e.g. “I don’t travel with company D.”
Different kinds of preferences may be used by agents in

different ways, according to the approaches they are using to

reason about preferences. If an agent uses utility functions

and the user defines that the storage capacity of a computer

must be maximized and provides a reference value α, the

agent may choose a utility function like f(x) = α
√
x.

For defining the allowed preference types, developers

must create instances of AllowedPreferences, and

make the corresponding associations with types and do-

mains. The specializations of AllowedPreferences
characterize different element types that can be used in

preference statements. There are four different possibili-

ties: classes (I prefer notebook to desktop), properties (The
notebook weight is an essential characteristic for me) and

their values (I don’t like notebooks whose color is pink),
enumeration literals (I prefer red to blue) and values (Cost
is more relevant than quality). Value is a first-class abstrac-

tion that we use to model high-level user preferences. We

adopted this term from [3]. A scenario that illustrates the use

of values is in the travel domain. A user may have comfort

(a value) as a preference when choosing a transportation, in-

stead of specifying fine-grained preferences, such as trains
are preferred to airplanes, but traveling in an airplane first-
class is better than by train, and so on. In this case, the user

agent is a domain expert that knows what comfort means.

Based on these definitions and on our metamodel (Fig-

ure 4), it is possible to build a User Model to model pref-

erences and configurations. It is composed of two parts: (i)

Configuration model; and (ii) Preferences model. As dis-

cussed above, in the Configuration model, users choose op-

tional and alternative variation points from the Variability

model, defining their configurations [11]. On the other hand,

in the Preferences model, users define preferences and con-

straints. These are more closely related to a cognitive model

of the user. User preferences (or soft constraints) determine

what the user prefers, and indirectly how the system should
behave. If the preferred behavior is not possible, the system

512

may move to other acceptable alternatives. Constraints, in

turn, are restrictions (hard constraints) over elements. As

opposed to preferences, they directly define mandatory or

forbidden choices that must be respected by the system.

Figure 4 shows the Constraint element and five

different specializations of Preference that represent

the different preference types previously introduced. Con-

straints are expressed in propositional logic formulae, how-

ever using only ¬, ∧ and ∨ logical operators. Atomic for-

mulae refer to the same types of elements of preferences and

can use comparison operators (=, �=, >, ≥, <, ≤) between

properties and their values. The PreferenceTarget
and its subtypes are used to specify the element that is

the target of the preference statement or formula. In

addition, it allows to specify nested properties, such us

Flight.arrivalAirport.location.country.

If we have directly associated preferences to classes,

properties, enumerations and values, either we would have

to make specializations of each preference type to each

element type or to change the UML metamodel to make

a common superclass of classes, properties, enumerations

and values. Given that we did not want to modify the UML

metamodel, but only to extend it, and the first solution

would generate four specializations for each preference

type, we used the PreferenceTarget as an indirection

for elements that are referred in preferences and constraints.

Besides defining preferences and constraints, users can

specify conditions, also expressed in propositional logic for-

mulae, to define contexts in which preferences and con-

straints hold. Furthermore, in order to guarantee that users

produce valid instances of the metamodel, we have defined

additional constraints over instantiated models, e.g. in a

nested property, the child of a property whose class is X

must also be a property of Class X.

4. Evaluating our User Metamodel across Dif-
ferent Application Domains

Our metamodel was built using preference statements

collected from different individuals and from papers related

to user preferences. The idea was to contemplate the dif-

ferent kinds of preference statements in order to maximize

the users’ expressiveness. The metamodel uses abstractions

from the user preferences domain, therefore the language

is built as an end-user language. This section presents two

Preferences models to show that our metamodel is generic

enough to model different kinds of preferences statements

in different domains – flight and computer domains. Given

that these are two well-known domains, we assume that the

reader is familiar with them, and due to space restrictions,

we present only the Preferences models. In addition, we as-

sume that the Preferences Definition model defines that all

preference types over all elements are allowed.

(a) Flight Domain

(b) Computer Domain

Figure 5. User Preferences model.

The first Preference model, which is from the flight do-

main, indicates where a user prefers to seat inside an air-

plane. This model consists of three order preferences, two

of them with conditions, and one minimization preference.

Next, we present the four modeled preference statements in

natural language, and Figure 5(a) shows how they are mod-

eled with our metamodel abstractions.

P1. If the flight is short, i.e. its duration does not exceed 4
hours, I prefer a seat by the aisle to a seat by the window.
P2. If the flight is long, i.e. its duration is higher then 4
hours, I prefer a seat by the window to a seat by the aisle.
P3. I always prefer to sit at the first rows of the airplane.
P4. Sitting in the first rows of the airplane is more important
to me than the seat location.

The computer domain Preferences model presented in

Figure 5(b) has some elements in gray color. They are

513

not part of the Preferences model, but from the Domain

model, but we included them in Figure 5(b) to present some

application-specific concepts used in this model. First, four

values are defined in the Computer Domain (mobility, read-

ability, performance and cost). These values can be rated

with “+”, ranging from one to five. These are the natural

language preference statements modeled in Figure 5(b):

P1. Cost is the most important value (+++++).
P2. I rate performance with ++++.
P3. I rate readability with ++++.
P4. I rate mobility with ++.
P5. I’m expecting to pay around $800 for my laptop.
P6. I want a computer with less than 3Kg.
P7. The lighter the computer is, the better.

It is important to notice that Rating and Order preferences

provide different information. By saying that cost is +++++

and performance is ++++, a user is informing that cost is

more important than performance (order), but performance

is also important, and should be taken into account.

5. Related Work

Several approaches have been proposed to deal with user

preferences. To build our metamodel, we have made exten-

sive research on which kinds of preferences other propos-

als represent and additional concepts they define. Typically,

preferences are classified as quantitative or qualitative (e.g.

“I love summer” versus “I like winter more than summer”).

Both approaches can be represented through our metamodel.

Quantitative preferences are modeled in the framework pro-

posed in [1], by means of a preference function that maps

records to a score from 0 to 1. On the other hand, CP-

Nets [4] models qualitative preferences. CP-Nets also allow

modeling conditionality, which is considered in our work

as well. The concept of normality is defined in [8], so that

users can express preferences considering normal states of

the world, but these preferences may change when the world

changes. The normality abstraction can be modeled using

conditions in our metamodel.

Ayres & Furtado proposed the OWLPref [2], a declar-

ative and domain-independent preference representation in

OWL. OWLPref does not precisely define the preferences

model, e.g. lacking the definition of associations, it shows

only a hierarchical structure of preferences. A preference

metamodel is also proposed in [13]. However, its expres-

siveness is very limited. It only allows to define desired val-

ues (or intervals) of object properties.

6. Conclusion

In this paper, we proposed a domain-specific metamodel

that provides abstractions from the user domain, including

constraints and preferences. Different abstractions used by

end users in natural language statements are directly rep-

resented. Our metamodel provides a domain-specific lan-

guage that empowers users to express their preferences to

program their agents. Besides constraints, five different

preferences types can be represented. In addition, we adopt

values as a first-class abstraction to model high-level pref-

erences. Instances of our metamodel are to be used in com-

bination with our proposed architecture, which uses them

as a virtual user representation. Services are provided by

user agents structured with traditional agent-based architec-

tures. The User Model provides a modularized view of dif-

ferent user-related concepts spread into agent architectures.

A Synchronizer module ensures that changes in the User

Model demands appropriate adaptations in user agents.

We are currently working on a language based on our

metamodel using syntactic sugar. In addition, we are inves-

tigating how to verify the User Model to identify inconsis-

tencies across preferences.

References

[1] R. Agrawal and E. L. Wimmers. A framework for expressing

and combining preferences. In 2000 ACM SIGMOD, pages

297–306, 2000.
[2] L. Ayres and V. Furtado. Owlpref: Uma representação declar-

ativa de preferências para web semântica. In XXVII Con-
gresso da SBC, pages 1411–1419, Brazil, 2007.

[3] T. Bench-Capon. Persuasion in practical argument using

value-based argumentation frameworks. Journal of Logic and
Computation, 13(3):429–448, 2003.

[4] C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole. Cp-

nets: A tool for representing and reasoning with conditional

ceteris paribus preference statements. Journal of Artificial
Intelligence Research, 21:135–191, 2004.

[5] J. Doyle. Prospects for preferences. Computational Intelli-
gence, 20:111–136, 2004.

[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.

Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1 edition, July 1999.

[7] C. Kästner and S. Apel. Virtual separation of concerns - a sec-

ond chance for preprocessors. Journal of Object Technology,
8(6):59–78, 2009.

[8] J. Lang and L. van der Torre. From belief change to prefer-

ence change. In ECAI 2008, pages 351–355, The Netherlands,

2008. IOS Press.
[9] P. Maes. Agents that reduce work and information overload.

Commun. ACM, 37(7):30–40, 1994.
[10] I. Nunes, S. Barbosa, and C. Lucena. Modeling user pref-

erences into agent architectures: a survey. Technical Report

25/09, PUC-Rio, Brazil, September 2009.
[11] I. Nunes, C. J. Lucena, D. Cowan, and P. Alencar. Build-

ing service-oriented user agents using a software product line

approach. In ICSR ’09, pages 236–245, 2009.
[12] S. Schiaffino and A. Amandi. User - interface agent inter-

action: personalization issues. Int. J. Hum.-Comput. Stud.,
60(1):129–148, 2004.

[13] D. Tapucu, O. Can, O. Bursa, and M. O. Unalir. Metamodel-

ing approach to preference management in the semantic web.

InM-PREF 2008, pages 116–123, USA, 2008.

514

