
Documenting and Modeling Multi-agent Systems Product Lines

Ingrid Nunes1 Uirá Kulesza2,3 Camila Nunes1 Carlos J. P. de Lucena1

1 PUC-Rio, Computer Science Department, LES - Rio de Janeiro - Brazil
{ioliveira,camilan,lucena}@inf.puc-rio.br

2 Recife Center for Advanced Studies and Systems - Recife - Brazil
uira@cesar.org.br

3 New University of Lisbon - Lisboa - Portugal

Abstract

In this paper, we explore the use of existing software pro-
duct line (SPL) approaches to document and model a multi-
agent system product line (MAS-PL). Our analysis focuses
specifically in the domain analysis and design stages of SPL
development. The main aim of our study is to investigate
the benefits, limitations and challenges of current SPL and
MAS-PL approaches/methodologies to document and model
MAS-PL features. Our investigation is illustrated and val-
idated through the use of a web-based conference manage-
ment system. As a result of our study, we propose the adap-
tation and extension of existing approaches to address the
modeling of MAS-PL features.

1. Introduction

Nowadays, a common scenario in organizations is to de-
velop similar products and to provide different customiza-
tions of these products to individual customers. This is
typically addressed in an empirical way. Software pro-
duct lines (SPLs) [18, 3] represent a new trend of soft-
ware reuse that investigates methods and techniques to build
and customize families of applications through a systematic
method. Clements & Northrop [3] define a software pro-
duct line (SPL) as “a set of software intensive systems that
share a common, managed set of features satisfying the spe-
cific needs of a particular market segment or mission and
that are developed from a common set of core assets in a
prescribed way ”. According to [4], a feature is a system
property that is relevant to some stakeholder and is used to
capture commonalities or discriminate among products in a
product line. The main aim of SPL engineering is to ana-
lyze the common and variable features of applications from
a specific domain, and to develop a reusable infrastructure

that supports the software development. This set of appli-
cations is called a family of products.

Over the past few years, several methods have been pu-
blished to address the problems and challenges of SPL en-
gineering [12, 18, 8]. Some of them only propose methodo-
logical guidelines, not specifying how to design or imple-
ment the SPL, meaning developers have to create their own
way to develop the product line. Some of these methodolo-
gies propose a complete SPL development process based on
existing paradigms, such as component-based [1] or object-
oriented [8] software development. However, there are
new trends, such as multi-agent systems (MASs) [10, 19],
which are not considered by the current SPL methodolo-
gies. MASs have emerged as a new software paradigm
to help in the development of complex software systems,
which contain properties such as autonomy, reactivity, pro-
activeness and social ability. Recently, new approaches
[16, 6] were proposed designed to explore the benefits of
integrating SPL and Agent-Oriented Software Engineering
(AOSE) techniques. Nevertheless, there are still many chal-
lenges to overcome in the development of multi-agent sys-
tems product lines (MAS-PLs) [17].

In this context, this paper investigates the adoption of
proposed SPL and MAS-PL methodologies in the docu-
mentation and modeling of MAS-PL. During this process,
we had to deal with challenges, such as how the features
can be documented, modeled and modularized throughout
the entire domain engineering process. A product line of
conference management systems that includes the imple-
mentation of several optional agency features is used to il-
lustrate and validate our study. Some adaptations and exten-
sions of current SPL approaches are also proposed in order
to address their identified deficiencies in the modeling and
documentation of more complex agency features.

The remainder of this paper is organized as follows. Sec-
tion 2 presents some existing SPL methodologies. In Sec-
tion 3, an overview of the ExpertCommittee case study is



presented, giving some details about its development. In
Section 4, we show how we have modeled and documented
our product line at the domain analysis and domain design
phases. We present some discussions in the Section 5. Fi-
nally, the conclusions and directions for future works are
discussed in Section 6.

2. Background

We have studied and compared some existing SPL me-
thodologies. Almost all methods focus on the description of
SPL properties at a very high level of abstraction and give
no guidance on how the required flexibility should be real-
ized at the implementation level. In our initial comparative
study [14], we used the same evaluation framework of [13]
to compare the SPL and MAS-PL methodologies. The goal
of this evaluation was to obtain an overview of the metho-
dologies and not necessarily to rate them. Subsequently, we
analyzed how the investigated approaches could deal with
the documentation and modeling of agency features. Ta-
ble 1 presents partial results of this analysis. Due to space
restrictions in this paper, we only reported the results of this
second part of our study. For additional details of our study,
please refer to [14].

Table 1. Methodologies Comparison.
Methodology Domain Analysis Domain Design
FORM Feature diagram with

composition rules
Subsystem, Process Model and
Module Models

Framework
[18]

Reusable, textual and
model-based require-
ments, variability model

Reference architecture, refined
variability model, mapping
from design artifacts to
requirements artifacts

PLUS Requirements model con-
sisting of a use case
model and feature model

Static and dynamic models,
feature/class dependencies, de-
sign of component-based soft-
ware architecture

MacMAS
extension [16]

Feature Model (features
are goals)

Acquaintance Organization,
Traceability and Role Models

Approach [6] Role Schema, Role Varia-
tion Point

-

Commonly the SPL approaches adopt feature models as
the typical notations to specify the SPL features. FORM
[12] provides a feature modeling method for analyzing and
capturing the common and variable features of SPLs and
their respective interdependencies. The features are orga-
nized into a coherent model referred to as a feature model,
which models the features of a product line as a tree, in-
dicating mandatory, optional and alternative features. Fea-
tures are essential abstractions that both customers and de-
velopers understand. Pena et. al. [16] also proposes the
use of feature models, but the features are the goals of the
agents. Goals are not a detail of the system that is visi-
ble to the end user; therefore, they should not appear in a
feature model. [18] document variabilities through a vari-
ability model, which models what varies from one product

to another with the explicit indication of the variation points
and variants. Furthermore, it also motivates the definition of
explicit tracing links between the variations points/variants
from the variability model and other analysis and design
models (e.g., use cases and class diagrams). PLUS [8] pro-
poses a feature model based on UML notation, but contains
the same information of traditional feature models. Almost
all the approaches do not address explicitly the modeling
of the SPL requirements. The PLUS approach defines a
customization of the use case model to specify and docu-
ment the SPL requirements. Dehlinger & Lutz [6] adopt
a product-line-like view of an agent-based software sys-
tem and proposes a requirements specification template to
capture and reuse dynamically changing configurations of
agents for future similar systems.

In the domain design, most of the SPL approaches inves-
tigated only provide support to document and detail the SPL
architectures in a very high-level manner. FORM proposes
the modeling of an SPL architecture using three models: (i)
subsystem model - presents the overall system structure; (ii)
process model - details the dynamic behavior of the system;
and (iii) module model - specifies each reusable component
of the architecture. PLUS adopts traditional UML models
marked with additional stereotypes to classify the system
classes. It mentions the use of agents in the design of an
SPL architecture, but it does not define a way to document
it. Table 1 shows that the other investigated approaches
[18, 6] do not provide explicit support to specify and model
the SPL architecture and its respective components.

3. ExpertCommittee Case Study Overview

Our approach was developed based on our experience
with the ExpertCommittee (EC) [15] case study, a multi-
agent system product line for the web domain.

The EC is a conference management system, developed
as a typical web-based application whose aim is to manage
the paper submission and reviewing processes from confe-
rences and workshops. The EC system provides functiona-
lities to support the complete process of conference mana-
gement. Each of these functionalities can be executed by
an appropriate user type of the system, such as conference
chair, program committee members, authors and reviewers.

This MAS-PL was developed in an evolutionary way.
We present details about the MAS-PL development (Sec-
tion 3.1). After that, we discuss some MAS particular vari-
ability types that we have identified in our case study (Sec-
tion 3.2).

3.1. The EC MAS-PL

We developed our case study considering that an evol-
ving system can be seen as an SPL, because the features



that are common to all versions of the system comprise the
core architecture of the product line. Thus, each version
of the system, which has new features, characterizes a new
product.

Our MAS-PL was developed in an evolutionary way.
There were three versions of the EC. The first version of
the EC is a typical web-based application composed of the
mandatory features that support the process of conference
management. It was structured according to the Layer ar-
chitectural pattern [7]. The second version of the EC sys-
tem contains features that are related to autonomous beha-
vior, such as deadline and pending tasks monitoring, and it
has also some new features that add new functionalities to
the system as well. The software agent abstraction was used
to model and implement the autonomous behavior added to
the original EC system.

The third and last version of the EC system was imple-
mented by applying a series of refactorings in version 2.
The system was restructured to make the (un) plugging of
optional features possible. Each optional feature was modu-
larized by using a combination of OO design patterns and
techniques with Spring1 configuration files that allows the
injecting of dependencies inside the variable points of the
EC SPL architecture, which can be seen in Figure 1.

Figure 1. EC MAS-PL Architecture.

3.2. Dealing with Variability

Different kinds of variability were identified in the EC
MAS-PL. In our case study, we mainly explored the vari-
abilities related to autonomous behavior and their respective
implementation using software agents. Throughout this pa-
per, these kinds of features are called agency feature. Next
we briefly describe them:

1http://www.springframework.org/

New Autonomous Behavior. We had to introduce agents
into the architecture when we added autonomous beha-
vior to the system. The Task Management feature im-
plied the addition of a new agent in the system, which
can be present or not, depending on the product being
derived;

New Behavior for an Agent or Role. Some features have
an impact inside the agent or the role. They allow
defining agent internal variabilities by defining specific
new behaviors of agents. The Conference Suggestion
Feature is an autonomous feature; thus, the user agent,
or more specifically the author role, performs it. When
a paper is registered in a conference, the author role
perceives it and sends suggestions of related conferen-
ces for the author who has registered his/her paper;

New Role for an Agent. Each role of the EC has a cor-
responding role in the user agent when a product has
some autonomous behavior. However, not all roles are
mandatory, such as the role Reviewer. Thus, roles must
be modeled in a way that they can be (un) plugged.

Almost all the autonomous behavior features are accom-
plished by the collaboration of different agents. In our
study, we have identified that many of these features are
typically addressed by a different set of components and
agents from the SPL architecture. In this way, a particu-
lar challenge of our study was to document and model the
structure and behavior of these crosscutting features in do-
main analysis and design.

4. Modeling and Documenting Agency Fea-
tures

In this section, we discuss the modeling and documen-
tation of the agency features from the EC MAS-PL, pre-
sented in Section 3. We focus specifically on the domain
analysis and design stages. We have initially analyzed how
existing SPL and MAS-PL approaches can deal with the
specification and modeling of agency features. Based on
the deficiencies and lack of expressivity of these existing
approaches, we propose new extensions to document the
agency features of the EC MAS-PL. The main aim of our
work is to define a set of guidelines to model and document
agency features along all SPL development stages.

4.1. Domain Analysis

The domain analysis stage defines activities for eliciting
and documenting the common and variable requirements of
an SPL. It is concerned with the definition of the domain
and scope of the SPL, and specifies the common and vari-
able features of the SPL to be developed. In our study, we



have analyzed how the modeling and documentation nota-
tions of current SPL approaches can deal with agency fea-
tures. Table 1 shows the results obtained considering the
SPL methodologies investigated in our study.

The EC MAS-PL features modeling and documentation
was supported by the feature model proposed in [5]. It is an
evolution of the original feature model proposed in [11] and
also adopted by FORM. Figure 2 shows a partial view of
this feature model. The features that were in all the versions
are the mandatory ones. Features that made part of only
some versions or varied from one version to another one are
the optional features.

Figure 2. Feature Model.

The way proposed in the PLUS method was quite ade-
quate to model our use cases. Use cases are grouped in pac-
kages according to the feature to which it was related. In
this approach, stereotypes are used to indicate if a use case
is mandatory (kernel), alternative or optional. The method
also proposes a feature dependency table to map use cases to
each feature. We adopted these tables instead of the graph-
ical notation of [18]. Figure 3 shows a partial view of the
EC MAS-PL use case model. It contains three kernel use
cases, one optional use case related to the reviewer role and
two agency features: task management and conference sug-
gestion. The following adaptations were applied to the use
case notation proposed in [8] to better specify the agency
features: (i) agents were represented with the same symbol
as actors and are associated to the use cases with which they
are involved; (ii) the <<agency feature>> stereotype was
adopted to indicate that the use cases of a specific package
is related to an agency feature.

The detailed description of the EC MAS-PL use cases

Figure 3. Use Case Diagram.

was carried out in the following way: (i) the kernel use cases
were described using the common documentation provided
by existing UML methods; and (ii) the agency features were
documented using the template depicted in Table 2. This
new template details important information to understand
the interactions between the agency feature and other ones,
such as: the event that starts the use case, the agents and
roles that are involved and if the feature is mandatory, op-
tional or alternative. We did not used the template proposed
in [6] because it is a too low-level specification and it ad-
dresses the internal variability of the agents.

Table 2. Agency Feature Description.
Agency Feature: Conference Suggestion
Reuse Category: Optional
Dependency: Extends Register Paper Use Case
Description: When a paper is registered to a conference
Event: paper was registered to a conference
Agent/Roles: user agent / author role, notifier agent
Main Flow:
1. User registers a paper to a conference.
2. User Agent perceives the change in the environment.
3. Author role detects the conferences that have areas of interest similar to the
ones of the registered paper and creates a message to be sent to the user.
4. Author role sends a message to the Notifier Agent requesting to send the
message to the user.
5. Notifier Agent sends the message.

4.2. Domain Design

The domain design aims at defining an architecture that
addresses both the common and variable features of an SPL.
A set of components and core assets can be specified as
part of the SPL architecture. The modularization of fea-
tures must also be taken into account during the design of
the architecture core assets to allow the (un) plugging of
features.

The EC MAS-PL architecture was documented in our
case study in two different levels: (i) a component view -
that illustrates the main components (or subsystems) of the



SPL architecture; and (ii) a logical view - that details the dif-
ferent components defined for the SPL architecture in terms
of UML class diagrams. Figures 1 and 4 show, respectively,
the component and logical view of the EC architecture. The
component view details the web system layers and the de-
ployed agents that execute inside this system. The compo-
nent view gives not only an overall overview of the SPL ar-
chitecture components and agents, but also expresses their
organization in runtime.

The logical view details the architecture components and
agents in terms of UML class diagrams. Similar to PLUS,
we used stereotypes to classify the classes, but our classifi-
cation was mandatory (kernel), optional or alternative. The
classes of different components can be organized in packa-
ges, or they also can be colored to characterize a specific
component. Figure 1 shows the main components of the
EC MAS-PL (GUI, Business and Data Layers), and the dif-
ferent agents responsible for implementing the autonomous
behavior of the system. Each different agency feature of
the MAS-PL can be detailed using: (i) a separate class di-
agram that only contains the classes responsible for imple-
menting that feature and alternatively the classes that are
related with it; (ii) a colored indication in the main class dia-
gram that shows the elements (classes, interfaces, methods)
related to the implementation of that feature. It is exem-
plified in Figure 4; and (iii) a specific design template that
details the components and agents involved in the realiza-
tion of an agency feature, and their respective interactions.

Table 3 shows the design template of the Conference
Suggestion agency feature. It details the goals, entities,
events and execution plan related to the conference sugges-
tion feature provided by a set of agents. It complements
the agency feature description provided in domain analysis
(Figure 2) by detailing the communication of the different
system agents and the environment. While the class dia-
grams of an agency feature describe the elements that mo-
dularize it, our template design details the dynamics of the
agents involved in its realization.

5. Discussions

In this section, we discuss some lessons learned and
challenges that we have found when documenting the
agency features of EC MAS-PL. These lessons learned of-
fer directions for a methodology for developing MAS-PL
that we are currently defining.

Agency Feature Documentation using SPL methodolo-
gies. During the modeling and documentation of the EC
MAS-PL, we have identified that most of the SPL metho-
dologies provide useful notations to model the agency fea-
tures. However, none of them completely covers their spe-
cification. Agent technology provides particular character-
istics that need to be considered in order to take advantage

Table 3. Agency Feature Design Description.
Agency Feature: Conference Suggestion
Goal: Send conference suggestions to users
Entities: EnvironmentAgent, UserAgent, NotifierAgent, AuthorRole and Con-
ferenceService.
Events Generated: SendMessage
Events Perceived: RegisterPaper
Plan:
Environment
Agent

Action: send message to User Agents
Message Content: paper registered

User Agent Action: creates Author Role and adds it to the agent
Condition: user is the first author of the paper

Author Role Action: send message to Conference Service
Message Content: conferences related to the conference the
author has registered

Conference
Service

Action: send message to Author Role
Message Content: related conferences

Author Role Action: creates user message with conferences returned
Action: send message to Notifier Agent
Message Content: user message to be sent to the user

Notifier Agent Action: send user message

of this paradigm. In our case study, we adopted a different
strategy to model the SPL agency features. We started mo-
deling the agency features using only the notations provided
by SPL methodologies to investigate their expressivity. Af-
ter that, we adapted and complemented the selected nota-
tions to improve the documentation of the agency features.
The domain analysis and design templates were created in
this context.

MAS-PL methodologies. The investigated MAS-PL me-
thodologies do not address development scenarios of tradi-
tional SPL architectures using agent technology. Instead,
they adopt an existing MAS methodology as a base and ex-
tend it with SPL techniques for a particular purpose. Pena
et. al. [16] adapt the Methodology for analyzing Complex
MultiAgent Systems (MaCMAS) to deal with evolving sys-
tems. Dehlinger & Lutz [6] have proposed an extensible
agent-oriented requirements specification template for dis-
tributed systems that supports safe reuse. Their proposal
adopts a product line to promote reuse in MASs, which was
developed using the MaCMAS and the Gaia methodolo-
gies. The main problems that we have observed when using
these MAS-PL methodologies to model and document the
EC MAS-PL were: (i) they do not offer a complete solution
to address the modeling of agency features in both domain
analysis and design; and (ii) they suggest the introduction of
complex and heavyweight notations that are difficult to un-
derstand when adopted in combination with existing nota-
tions (e.g. UML) and do not capture explicitly the separated
modeling of agency features.

Crosscutting agency features. Many of the agency fea-
tures are implemented by a set of different system com-
ponents, agents and classes. They are characterized as
crosscutting features, because their design and implementa-
tion are typically spread and tangled along different system
modules. In our study, we observed that the current SPL
methodologies do not provide clear support to deal with the



Figure 4. Class Diagram of the EC product line.

documentation of these crosscutting features. In domain de-
sign, we have proposed a template design to help the docu-
mentation of the agency features. It allows specifying how
the different design elements interact to address a specific
agency feature. We are currently investigating how existing
aspect-oriented approaches [9, 2] can help the visual docu-
mentation of the agency features in combination with our
templates.

6. Conclusions and Future Work

In this paper, we presented an exploratory study that ana-
lyzed and discussed how existing SPL approaches can help
the documenting and modeling of multi-agent system pro-
duct lines (MAS-PLs). Different agency features were pre-
sented, which were added to an existing web-based confe-
rence management system as optional features. Three types
of agency variabilities were addressed in our paper: ad-
dition of agents; addition of plans; and addition of roles.
Most of the MAS-PL documentation was supported by the
PLUS approach, showing the effectiveness of current SPL
approaches to document MAS-PL. However, the documen-
tation of the agency features required the creation of addi-
tional templates to specify: (i) the interdependencies and
relationships between core functionalities (mandatory use
cases) and optional agency features (optional use cases) in
domain analysis; and (ii) the elements and dynamics res-
ponsible to address a given agency feature in domain de-
sign.

We are currently working on the development of a

methodology that allows an explicit documentation and
tracing of agency features throughout the SPL development
process. The proposed methodology aims to be simple and
systematic. We believe that due to the high complexity of
many SPL methodologies, many of them are not used in
practice. Different and new abstractions have been pro-
posed in these methodologies, making the understanding
and adoption of them difficult. Our methodology is being
organized as a process framework composed of: (i) a core -
that defines a set of mandatory activities and artifacts; and
(ii) specific customizations - that specify additional activi-
ties and artifacts to the core according to specific scenarios
that need to be addressed. Our approach aims to be syste-
matic in the sense of providing clear and detailed guidelines
about how developers should use it.

References

[1] C. Atkinson, J. Bayer, and D. Muthig. Component-based
product line development: The KobrA approach. In P. Dono-
hoe, editor, SPLC, pages 289–309, 2000.

[2] S. Clarke and E. Baniassad. Aspect-Oriented Analysis and
Design: The Theme Approach (The Addison-Wesley Object
Technology Series). Addison-Wesley Professional, March
2005.

[3] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, Boston, MA, USA,
2002.

[4] K. Czarnecki and S. Helsen. Feature-based survey of
model transformation approaches. IBM Systems Journal,
45(3):621–645, 2006.



[5] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged con-
figuration using feature models. In SPLC, pages 266–283,
2004.

[6] J. Dehlinger and R. R. Lutz. A Product-Line Requirements
Approach to Safe Reuse in Multi-Agent Systems. In SEL-
MAS, pages 1–7, New York, NY, USA, 2005. ACM Press.

[7] M. Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, November 2002.

[8] H. Gomaa. Designing Software Product Lines with UML:
From Use Cases to Pattern-Based Software Architectures.
Addison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA, 2004.

[9] I. Jacobson and P.-W. Ng. Aspect-Oriented Software Devel-
opment with Use Cases (Addison-Wesley Object Technology
Series). Addison-Wesley Professional, 2004.

[10] N. R. Jennings. An agent-based approach for building com-
plex software systems. Commun. ACM, 44(4):35–41, 2001.

[11] K. Kang, S. Cohen, J. Hess, W. Novak, and Peterson.
Feature-oriented domain analysis (foda) feasibility study.
Technical Report CMU/SEI-90-TR-021, Software Engi-
neering Institute, Carnegie-Mellon University, November
1990.

[12] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and
M. Huh. Form: A feature-oriented reuse method with
domain-specific reference architectures. Ann. Softw. Eng.,
5:143–168, 1998.

[13] M. Matinlassi. Comparison of software product line archi-
tecture design methods: Copa, fast, form, kobra and qada. In
ICSE, pages 127–136, Washington, DC, USA, 2004. IEEE
Computer Society.

[14] I. Nunes. Towards a multi-agent product line develop-
ment methodology, 2008. http://www.inf.puc-rio.br/ io-
liveira/maspl/.

[15] I. Nunes, C. Nunes, U. Kulesza, and C. Lucena. Develop-
ing and evolving a multi-agent system product line: An ex-
ploratory study. In AOSE (to appear), 2008.

[16] J. Pena, M. G. Hinchey, M. Resinas, R. Sterritt, and J. L.
Rash. Designing and managing evolving systems using a
MAS product line approach. Science of Computer Program-
ming, 66(1):71–86, 2007.

[17] J. Pena, M. G. Hinchey, and A. Ruiz-Cortés. Multi-agent
system product lines: challenges and benefits. Commun.
ACM, 49(12):82–84, 2006.

[18] K. Pohl, G. Bckle, and F. J. van der Linden. Software Pro-
duct Line Engineering: Foundations, Principles and Tech-
niques. Springer-Verlag, New York,USA, 2005.

[19] M. Wooldridge and P. Ciancarini. Agent-Oriented Software
Engineering: The State of the Art. In P. Ciancarini and
M. Wooldridge, editors, AOSE, volume 1957, pages 1–28.
Springer-Verlag, Berlin, 2000.


