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Abstract. Use Cases (UC) are a popular way of describing system be-
havior and UC quality impacts the overall system quality. However, they
are presented in natural language, which is usually the cause of issues
related to imprecision, ambiguity, and incompleteness. We present the
results of an empirical study on the formalization of UCs as Graph Trans-
formation models (GTs) with the goal of running tool-supported analyses
on them and revealing possible errors. To evaluate our approach, we ap-
ply it to a set of real UC descriptions obtained from a software developer
company and measured the results through metrics. The final results
demonstrate that this approach can reveal real problems that could oth-
erwise go undetected and, thus, help improve the quality of the UCs.
Keywords. Use Cases, Graph Transformation, Model Analysis.

1 Introduction

Use Cases (UC) [2] are a popular model for documenting software expected
behaviour. In current practice, UC descriptions are typically informally docu-
mented using, in most cases, natural language in a predefined structure. Being
informal descriptions, UCs might be ambiguous and imprecise. Thus, the veri-
fication of UCs normally corresponds to manual inspections and walkthroughs
[4], and detecting problems is not a trivial task. Since software quality is highly
dependent on the quality of the specification, cost-effective strategies to decrease
the number of errors in UCs are crucial. Strategies for the formalization of UCs
have already been proposed, however, many of them assume a particular syn-
tax for UC description tailored for their particular formalisms. This limits the
expression of requirements and, in some cases, also restrains the semantics of
the UC. Our aim is to keep the expressiveness of a description in natural lan-
guage and use a formalism for modeling/analysing UCs that is flexible enough
to maintain the semantics defined by stakeholders.

In this paper, we investigate the suitability of Graph Transformation (GT)
as a formal model to describe and analyze UCs. Some reasons for choosing GT
are: the elements of a UC can be naturally represented as graphs; it is a visual
? This work is partially supported by the VeriTeS project (FAPERGS and CNPq).

Christiano Braga
132



language; the semantics is very simple yet expressive; GT is data-driven; there
are various static and dynamic analysis techniques available for GT, as well as
tools to support them (e.g., [10]). We work towards an approach that integrates
UC formalization and tool-supported analysis, with the objective of improving
the quality of UCs. We applied our approach on a set of real UC descriptions
obtained from a software development company and measured the results.

This paper is organized as follows: Section 2 presents the necessary back-
ground information and a overview of the translation of UCs for GTs.; Section 3
presents the settings of the conducted empirical study; Section 4 presents an
analysis and discussion of results; Section 5 presents an analysis of threats to
the study; Section 6 presents a comparative analysis of our technique with some
related work; and Section 7 concludes the paper and discusses future work.

2 Modeling UCs using GTs

2.1 Background

Use Cases. According to Cockburn (2000) [2], a Use Case (UC) defines a contract
between stakeholders of a system, describing part of the system behavior. The
main purpose of a UC description is the documentation of the expected system
behavior so as to ease the communication between stakeholders, often including
non-technical people, about required system functionalities. For this reason, UC
descriptions are usually described in a textual form.
Graph Transformations. The formalism of Graph Transformations (GT) [7] is
based on defining states of a system as graphs and state changes as rules that
transform these graphs. Our analysis of GTs is based on concurrent rules and
critical pairs, two methods of analysis independent from the initial state of the
system and, thus, they are complementary to any other verification strategy
based on initial states (such as testing).

2.2 Proposed Formalization and Verification Approach

The proposed approach, detailed in [6], takes as input a textual UC description,
from which the entities and actions that will be part of the formal model are
identified. Then, basic verifications can be performed regarding the consistency
of the extracted information. If inconsistencies are detected, the UC must be
rewritten to eliminate them or the analyst can annotate the problem to be
resolved later on. When no basic inconsistencies are found, the GT can then be
generated. In this process, conditions and effects of actions are modeled as states
and a type graph is built. After that, each UC step is modeled as a transition
rule from one state (graph) to another. Having the GT, a series of automatic
verifications can be performed to detect possible problems.

We use the AGG tool [10] to perform the automatic analyses on the GT
model. All detected issues are annotated as open issues (OIs) along with the
solutions (when applicable). Open issues are classified according to their severity
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level: Yellow (for warnings), Orange (for relevant issues), or Red (for critical
issues). The actions to be taken regarding found OIs depend on the analysts,
who can determine whether an OI is in fact a real problem.

3 Empirical Study Settings

In order to adequately evaluate our approach, we followed the principles of Ex-
perimental Software Engineering [11] and the GQM template [1]. Our main study
goal was to demonstrate the usefulness of GTs to improve the quality of UCs by
the identification of OIs, from a perspective of the researcher, in the context of
a single real software development project. From this, we derived two research
questions, which we aimed to answer with our study.

RQ-1 Are system analysts able to detect problems in their own UC descriptions
without additional support?

RQ-2 How effective is our GT-based approach in identifying problems in UCs?

The UC descriptions we used in our study are part of the analysis documen-
tation of an industrial software project. This project involves the development of
a typical system to manage products from a warehouse, with functional require-
ments such as adding new products, creating sale orders, and releasing products
in stock. We do not provide any further details about our target system and its
UCs due to a confidentiality agreement.

3.1 Procedure

The procedure of the study consists of the following steps:
(1) Analysis by System Analyst. We requested a system analyst responsible

for the UC descriptions to carefully revise them, and point out problems, such
as ambiguity, imprecision, omission, incompleteness, and inconsistency.

(2) UC Formalization. Given a set of UCs, we performed the steps detailed
in [6] to formalize them using GTs and used the AGG tool to analyze them,
detecting some OIs.

(3) Evaluation of Open Issues. After identifying OIs, we had evaluated whether
detected OIs were real problems in the analyzed UCs.

(4) Data Analysis. Our aim is that our approach detects all and only real
problems. This can be seen as a classification problem, and thus the effectiveness
of our approach can be measured using the metrics, widely used in the context
of information retrieval, of precision and relative recall [5], whose formulas are
shown below, where true positives are OIs that correspond to real problems;
false positives are OIs that are not real problems; and false negatives are real
problems not identified as OIs.

Precision =
true positives

true positives+ false positives

(1)

RelativeRecall =
true positives

true positives+ false negatives

(2)
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Table 1: Study results

OI UC 1 UC 2 UC 3 UC 4 UC 5 Total
Type #OI #P #OI #P #OI #P #OI #P #OI #P #OI #P

3 2 4 2 2 1 4 2 1 0 14 7
1 1 1 1 1 1 0 0 2 2 5 5
3 3 1 1 3 2 3 3 3 3 13 12

Total 7 6 6 4 6 4 7 5 6 5 32 24
Legend: UC - Use Case; OI - Open Issue; P - Problem.

4 Results and Discussion

After revising the original UCs, the system analyst found no problems. However,
after applying our approach to these UCs, we identified 32 OIs across the 5 UCs,
which gives an average of 6.4 OIs per UC. This is an expressive number, given
that the system analyst stated that the UCs had been correctly specified. In
order to verify whether the identified OIs were false alarms (false positives), the
system analyst was asked to check each one of them. Of the 32 OIs, 24 were
pointed out as real problems and only 8 as false positives.

Table 1 presents our results in detail. It shows the number of OIs found in each
UC (columns labeled with OI) and how many of these OIs were confirmed as real
problems (columns labeled with P). The rows show the number of detected OIs
with respect to their level of severity. The table also presents the total number
of detected OIs and the total number of real problems considering all the 5 UCs.
The symbols , , and represent warnings (severity Yellow), relevant issues
(severity Orange), and critical issues (severity Red), respectively.

We then analyzed these results according to the selected metrics. Because the
system analyst was unable to identify any problem without support, the number
of problems not identified by our approach was 0, leading to relative recall = 1.0.
As for the Precision, we obtained 0.75 (24 true positives and 8 false positives) —
that is, 75% of the OIs identified by our GT-based approach were real problems.
Not only most of the identified issues were actual problems, but also most of the
false alarms (7 of 8) were related to low severity OIs.

By analyzing OIs not identified as problems, we observed that 6 of them were
not necessarily classified as a false positive by the system analyst. They preferred
to leave such issues as they were and postpone changes to future design decisions,
considering that they alone could not decide what was the best approach to tackle
those issues. The other 2 OIs found, confirmed as false positives, were related
to incompleteness or ambiguities due to the lack of knowledge of the modeler
about the problem domain and the internal processes of the company.

Note that OIs were identified without the intervention of any stakeholder.
The only provided input was the software documentation in the form of UC
descriptions and the output was a checklist with OIs to be revised. More impor-
tantly, had these problems been detected before the design and implementation,
when they should have, development costs could have been potentially reduced.
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5 Threats to Validity

During our study we carefully considered validity concerns. This section discusses
the main threats we identified to validate this study and how we mitigated them.

Internal Validity. The main threat to internal validity of this study was the
selection of modeler of UCs in the formalism of graphs. However, we want to
show that, correctly following the steps of our strategy, the modeler does not
need a deep understanding of the formalism. Moreover, we used the AGG tool
to automate the analyses and provide a graphical interface.

Construct Validity. There are different ways of modeling a system through
the formalism of graphs that can produce some threats to construct validity. The
modeler may not follow correctly the modeling steps, being influenced by their
prior knowledge about the formalism. Therefore, we proposed a roadmap, step
by step, on how to model UCs as GTs, for both beginners and experts users.

Conclusion Validity. As the main threat to validity of the conclusion we
highlight potential problems in the generation of the model in the formalism
of graphs. Once again, our step-by-step modeling process should be followed
to prevent the modeler from creating a model that is not consistent with the
textual description. Moreover, the tool-supported verifications can also detect
such modeling errors, thus reducing the risk of this threat.

External Validity. The main threat to the external validity was the selection
of artifacts on which we based our study. We did not use any criteria to select
either the project or the system analyst who participated of our study. We were
aware of this threat during the study. However, we opted for randomly choosing
artifacts to support the applicability of our strategy in different scenarios.

6 Related Work

Some authors have developed approaches for translating UCs to well-known for-
malisms, such as LTS [8], Petri Nets [12], and FSM [9]. Unlike these formalisms,
a GT model is data-driven and we do not need to explicitly determine the control
flow unless it is necessary to guarantee data consistency. The approach presented
in [13] allows the simulation of the execution of the system but do not report
the use of any type of analysis, which, in our opinion, reduces the advantage
of having a formal model. The work described in [3] considers analyses such as
critical pairs and dependencies involving multiple UCs and provides some ideas
on the interpretation of the results. However, we propose a more structured way
of providing diagnostic feedback about single UCs, which serves as a guide to
point out the possible errors as well as their severity level.

7 Conclusions and Future Work

We investigated the suitability of GT as a formal basis for UC description and
improvement. We evaluated our approach through an experiment with real soft-
ware artifacts, where we could detect existing errors, which helped improve the
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original UCs. Making a general analysis of the experiment, we consider the re-
sults promising, since it was possible to identify a large number of real problems
based on a documentation that was produced at an early stage of software de-
velopment. We observed the need for further automating the process, if not all,
at least some steps, which is one of the most immediate planned future work.

A inter-UC analysis is currently being implemented as well as a more detailed
diagnostic feedback. Within the same model frame, other types of validation
and verification techniques on GT models, such as test case generation, model
checking, and theorem proving, are also subject of current work. We plan to
investigate whether we could reduce the impact and cost of changes by identifying
which parts of the description are affected. Finally, note that, although we did
not present any new formal method or verification technique here, a considerable
amount of expertise in formal methods was required to define the OIs: they are
meant to bridge the gap between the informal and formal worlds. We believe that
this type of work is crucial towards the industrial adoption of formal methods.
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