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Abstract. Model-driven development (MDD) is an approach for sup-
porting the development of software systems, in which high-level model-
ing artifacts drive the production of low-level, time and effort-consuming
artifacts, such as source code. Previous work on its use showed that it
significantly increases development productivity, given that the effort is
focused on the business domain instead of technical issues. However,
MDD was exploited in the context of agent-based development in a lim-
ited way, and previous work has not shown real evidences of the benefits
that MDD promotes in this context. In this paper, we explore the use
of MDD in agent-based modeling and simulation. We conducted a case
study in the traffic signal control domain, in which autonomous agents
are in charge of managing traffic light indicators to optimize traffic flow.
We propose an MDD approach, composed of a modeling language, and
model-to-code transformations for producing runnable simulations. An
empirical study provides evidence that our MDD approach reduces the
effort to develop agent-based simulations.

Keywords: Agent-based Modeling and Simulation, Model-driven De-
velopment, Development Effort, Traffic Signal Control

1 Introduction

Building simulations in which there are multiple interacting agents situated in
an environment is a challenging task, which has been widely investigated in the
context of agent-based modeling and simulation (ABMS). In ABMS, modeling
refers to the task of specifying a model that represents a target system (e.g., a
traffic system), while simulation is the execution of such model over a timeline,
running agent behaviors and interactions repeatedly. During the design and im-
plementation of agent-based simulations, different roles with distinct expertise
must interact and communicate [7], and this is often a barrier to a successful
development. Usually, the domain expertise is concentrated on the thematician
and modeler roles, while the technical expertise (on ABMS and its simulation
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platforms) is concentrated on the computer scientist and programmer roles. Re-
searchers have already argued about the importance of tools and building blocks
that enable domain experts themselves to built agent-based simulations [14].

Many alternatives have been proposed for the design and implementation of
agent-based simulations. There are methodologies, languages, and programming
platforms [12, 19] that focus exclusively on MAS aspects such as agents, inter-
actions, and the environment. However, those MAS alternatives do not cover
simulation aspects, such as the creation and initialization of entities and agents.
In turn, agent-based simulation platforms—e.g., NetLogo [31]—are alternatives
that consider such simulation aspects. These platforms, however, demand pre-
vious expertise in ABMS or in programming, thus hindering domain experts to
build agent-based simulations themselves. The demand for technical expertise,
such as programming, would significantly reduce with the provision of a solution
that enables creating simulations by means of ABMS-related building blocks.

An approach towards this direction is model-driven development (MDD),
whose goal is to express domain concepts effectively. MDD makes domain con-
cepts (e.g., adaptation) available for modeling by means of a domain-specific
language (DSL) [22]. Traditional software development approaches, in contrast,
often only provide concepts from the solution space (e.g., programming state-
ments and abstract types). Transformation engines and code generators reduce
or suppress the development effort when using MDD [25]. There are MDD ap-
proaches focused on ABMS, such as metamodels [11, 18] and methodologies to
identify the domain concerns that should be included in a modeling language [9,
15]. Nevertheless, they are limited to particular MDD aspects and are abstract
in the sense of modeling only high-level ABMS-concepts, leaving much left to be
developed in specific applications. Moreover, with such individual specific con-
tributions, there is a lack of evidence of the real benefits that MDD approaches
promote, covering the design and implementation of agent-based simulations.

In this paper, we address these issues by further exploring the use of MDD
in the context of ABMS and empirically assessing the benefits it provides. We
present a case study of the development of an MDD approach in the adap-
tive traffic signal control (ATSC) domain, in which we (i) performed a domain
analysis; (ii) designed a metamodel and DSL; and (iii) developed model-to-code
transformations. Moreover, we empirically assessed the gains obtained with our
approach, in terms of development effort. Our approach is focused on a spe-
cific domain, as opposed to existing work that focused on ABMS in general,
given that previous work on MDD showed that the more specific the application
domain, the higher the chance of success [16]. We describe how the domain con-
cepts were identified through a domain analysis process, which is the foundation
of our ABMS metamodel. For the domain analysis, we considered existing simu-
lations, which adopt either adaptation or reinforcement learning techniques, to
keep the scope limited due to the aforementioned reasons. Because these tech-
niques are often complex to develop, we provide a DSL that gives building blocks
for modeling and automated transformations for code generation. Although we
focused on a specific domain, we identified many abstractions, included in our



metamodel and DSL, that potentially can be adopted in other domains. We con-
ducted an empirical study that evaluated the reduction of the effort required to
develop agent-based simulations. We concluded that our approach reduces the
development effort by 60-86%, in terms of produced software assets.

Specifically, our case study provides the following contributions: (i) a domain
analysis method, which is applicable to other domains; (ii) a metamodel, DSL,
and code generator, which support the development of applications in the in-
vestigated domain and potentially in similar domains; and (iii) an evaluation,
which concretely demonstrates the benefits of MDD for ABMS.

2 Background on MDD

Software models are widely used in software development. While in traditional
model-based software engineering they are used as guidance to source code im-
plementation, in model-driven development (MDD) [25] models are equivalent
to source code, because they are used to automatically generate it. Models are
thus first-class citizens, and the development is driven by modeling artifacts [27].

Making domain abstractions available for modeling is fundamental in MDD.
Previous work on the use of MDD in domains such as automotive manufacturing,
mobile devices, and telecommunications, showed that productivity increases be-
cause the modeling effort is focused on domain concerns instead of programming
statements [26]. Such effective MDD approaches are built upon a domain-specific
language and its underlying metamodel; and source code generators [27].

A domain-specific language (DSL) is a modeling or programming language
designed for a particular domain, trading generality for expressiveness [27]. An
MDD approach relies on a DSL to build models [28]. The key element of a
DSL—and of an MDD approach as a whole—is its underlying metamodel. Such
metamodel defines meta-entities and relationships between them within a do-
main. The DSL simplifies the metamodel instantiation by providing building
blocks for representing model elements and thus a more productive environ-
ment. In order to build a DSL, it is crucial to perform a domain analysis [28].
It produces as result a domain model, which describes domain concepts that
should be provided by the modeling language so as to increase its expressive-
ness. Such domain model is the basis for creating the DSL metamodel. A DSL
is described by its syntax, and semantics. The abstract syntax is specified in
the DSL metamodel, while the concrete syntax specifies the notation used to
represent instances of metamodel elements (e.g., textual, or graphical symbols).
Finally, semantics specify the meaning of such symbols and their constraints.

Source code generators automate the creation of low-level software artifacts
(e.g., lines of code). Manually creating such artifacts is an effort-consuming task
and requires technical expertise. Moreover, pieces of code for recurrent structures
and concepts are often implemented repeatedly. By putting these pieces of code
into code generators, an MDD approach increases productivity in software de-
velopment. Code generators are build upon production rules that describe what
code statements are generated for each metamodel element.



3 MDD for ABMS

As previously stated, in this work we focus specifically on the adaptive traffic
signal control (ATSC) domain. This is due to the trade-off to be made in MDD
(generality vs. expressiveness), and there is evidence that the more specific the
application domain, the higher the chance of success [16]. We next detail our
case study, first describing the conducted domain analysis, then presenting the
resulting metamodel, modeling language, and model-to-code transformations.

3.1 Domain Analysis

Any source of explicit or implicit domain knowledge can be considered in the
domain analysis [22]. In this work, we essentially used existing agent-based sim-
ulations in the ATSC domain. Derived domain concepts were further validated
using domain expert knowledge. Consequently, our domain analysis was per-
formed using a proposed bottom-up approach, to reduce the bias of individual
experts’ views while identifying domain concepts. However, we consulted ABMS
experts to select ATSC simulations for analysis. As result, we used as source
work on self-organizing [5, 10] and reinforcement learning [21, 23, 30].

To guide the domain analysis, we considered existing work in this context,
focused on MAS. Hassan et al. [15] proposed a process to guide the identification
and formalization of domain concepts. A similar initiative was proposed by Garro
and Russo [9]. In spite of providing valuable guidelines for identifying agents,
interactions, and environmental entities, these processes do not provide support
for identifying the simulation aspects of ABMS, such as temporal extent, ini-
tialization, and observation. To overcome this issue, we followed the Overview,
Design concepts, and Details (ODD) protocol [13]. This protocol guides the iden-
tification and specification of most of the key characteristics of a simulation, such
as its structure, agent capabilities (e.g., learning) and its underlying processes.
Thus, our domain analysis method is composed of the following steps.

Step 1 Concept Preliminary List. A list of MAS-related concepts is identi-
fied using the existing ATSC simulations (e.g., agents and the environ-
ment), following the steps of Hassan et al. [15] and Garro and Russo [9].

Step 2 ODD-based Refinement. The ODD protocol is used to refine identi-
fied concepts, considering simulation aspects and additional agent capa-
bilities such as learning.

Step 3 Concept Abstractions. Identified concepts, already refined based on
the ODD protocol, are analyzed in order to find the essence behind them.
The analysis considers recurrent characteristics and behaviors. Similar
concepts are abstracted as a single, essential concept, or generalized to
a parent concept. During the analysis, a table of abstractions is built,
containing the domain terminology and concepts, and generalizations.

Step 4 Domain Modeling. The table of abstractions is used to build the do-
main model, which is described in the next section.



After performing the steps described above, which produced intermediate
documentation1, we identified different recurrent concepts in this domain, which
are: environment, agents and their capabilities or perceptions, vehicles and de-
mand, adaptation and learning. These are detailed as follows.

The environment of an ATSC simulation is a traffic network, which is com-
posed of links and nodes that represent road lanes and intersections, respectively.
Such traffic network is often provided as separated files, such as open street maps.
A traffic signal controller (TSC) is an agent in charge of managing traffic light
indicators (red, yellow, and green). TSC agents are created at each intersection
and their perception is related to their incoming and outgoing lanes, such as the
queue length and throughput. Additionally, it is assumed that TSC agents are
able to perceive vehicle-related data, such as speed, and travel/waiting time.

The design of a TSC agent involves a set of concepts from the traffic control
domain, which comprises our basic domain terminology and is shown in Figure 1.
A stage describes a particular set of allowed traffic movements for vehicles in the
lanes of the intersection. For each TSC, many stages are defined to regulate the
traffic flow. A phase is a period of time in which the indicators of the correspond-
ing stage are green, allowing the traffic flow. In addition to the green interval, a
phase can specify a change interval (yellow) and a clearance interval (in which
all the indicators of the intersection are red before activating the next phase). A
cycle corresponds to a complete rotation through all the stages. Consequently,
the duration of a cycle corresponds to the sum of its phase intervals. Finally, a
plan is a set of phases plus the sequence in which they are activated. An off-
set can be defined for a plan and corresponds to a period of time in which the
activation of the first phase is postponed. In order to evaluate the effectiveness
of TSC agents, vehicles are created in the traffic network during the simulation
according to a traffic demand.

Regarding adaptation, each existing simulation considered deals with it in
its own particular way. Wiering [30], Oliveira and Bazzan [23], and Mannion et
al. [21] described the use of reinforcement learning by TSC agents. Each work
adopted a particular state representation and reward function, and the policy
learned by TSC agents is related to stage, phase, or plan selection. The work on
self-organizing traffic lights [5, 10] introduced a set of adaptive criteria, based on
traffic conditions, which drive TSC agent decisions. These introduced adaptation
approaches share a common characteristic: TSCs have designer-specified fixed
plans, which are used as comparison baselines. Next, we describe how these
observations and concepts were abstracted by following steps 3 and 4 of our
domain analysis method, to derive the domain model.

3.2 Metamodel and Modeling Language

We next describe the key element of our MDD approach: a metamodel that
is in accordance with the concepts identified in our domain model. The DSL
concrete syntax and semantics of the modeling language are then detailed, and
the semantics is only informally described, due to space restrictions.

1
http://www.inf.ufrgs.br/prosoft/resources/dsl4abms/2017emas/



Fig. 1. ATSC Domain Terminology and Concepts.

Metamodel. The metamodel, partially presented in Figure 2, was built follow-
ing the abstraction step of our domain analysis method. It is constructed upon
the EMF Ecore2 meta-metamodel. The basic elements of the metamodel are en-
tity, agent, and attribute.3 An entity represents objects existing in a simulation
(such as lanes and intersections) that has attributes. An agent is a particular
kind of entity that has agent capabilities. The idea of agents as entities with
attributes are in fact part of almost all agent-based metamodels, such as those
presented by Bernon et al. [1]. However, given that we are following a bottom-up
approach, existing metamodels are not used as a start point to avoid introduc-
tion of bias. Moreover, it can potentially lead to an overly complex metamodel.
From the ABMS perspective, such bottom-up specification can provide valuable
insights on building an effective MDD approach.

From the abstraction step, we observed that a TSC is, in its essence, an agent
that has a flow control capability for regulating the flow of a set of streams. Con-
sequently, it has a set of flow regulators for each known stream. These regulators
can be seen as actuators of the agent. Regulators can be in certain states, such
as green or red, open or closed. These states are abstracted to actuator states.
The actuator state that is automatically activated when no other state is active
is the default state. Actuators can be grouped into actuator groups, on which
all activate the same state simultaneously. Consequently, a group is considered
a single actuator because both are considered actuatable devices. Each actuator
is identified by a number that relates the actuator to the corresponding stream
(i.e., a regulator 0 is in charge of regulating the stream 0, and so on). Streams
are represented as an agent attribute with cardinality greater than one (i.e., a
collection of streams). Additionally, we consider actuators mutually exclusive:
only one actuator or group can assume a non-default state at a given moment;
all others remain in the default state. Figure 3 illustrates how domain concepts
are abstracted to these metamodel elements. In the bottom, there are concepts

2
http://www.eclipse.org/modeling/emf/

3
Element names have the MM prefix in Figure 2 due to the technology used to specify them.



MMEntity

name : String

description : String

pluralName : String

MMAgent
MMAgentCapability

MMFlowControlCapability

MMActuatorState

name : String

isDefault : Boolean = false

MMActuatorGroup

name : String

MMActuator

id : Int

MMActuatable

MMActivation

MMDecisionCapability

timerSelectedOption : Double = 0.0

decide() : MMDecisionOption

MMStateMachine

MMAdaptation

MMAttribute

name : String

description : String

value : AnySimpleType

cardinality : Int

MMLearning

MMDecisionOption

id : String

MMType

[0..*] capabilities

[1..*] states

[1..*] regulators

[1..*] actuators

[1..1] state

[1..1] actuatable

[0..*] attributes

[0..1] decisionCapability

[1..*] activations

[0..*] options

[0..1] selectedOption

[0..1] complexType
[1..1] activation

Fig. 2. ABMS Metamodel built based on Existing ATSC Simulations.

that were identified in steps 1 and 2 of the domain analysis. Dashed arrows
point to the metamodel elements that abstract such concepts. As can be seen, a
TSC agent is abstracted to an agent and a flow control capability. Each traffic
signal indicator is an actuator, and red/yellow/green states are actuator states.
Stages are abstracted to actuator groups given that the set of actuators that
must activate simultaneously is obtained from stage definitions.

The behavior associated with a flow control capability is related to the man-
agement of its actuators. At each timestep, an agent must decide which pair
(actuator, state) is selected for activation. Such pair is represented as an agent
attribute whose type is activation. With this attribute, a decision capability must
be associated, whose options are all the possible activation pairs. A decision ca-
pability represents a decision policy that must be chosen from many decision
options. From the domain analysis, we identified three types of decision capa-
bilities: state machines, adaptation, and learning. It is important to notice that
decision capabilities can also be decision options for another decision capability.
For example, a learning capability, whose decision options are state machines.

A state machine represents a fixed decision policy. It is composed of states,
which are pairs of decision option and transitions. To represent state machines,
we adopt a subset of the Unified Modeling Language (UML) Statemachines meta-
model.4 An adaptation capability represents an adaptive decision policy. There
is an adaptation criterion that describes which option should be selected among
those available—the one that meets the criteria. Last, a learning capability al-
lows an agent to learn a decision policy. We consider a reinforcement learning
capability, with which agents learn through experience. As agents act on the

4
http://www.omg.org/spec/UML/2.5/



Fig. 3. Example of Concept Abstractions.

environment, they receive a reward signal based on the outcomes of previously
states and actions. As illustration, Figure 3 also includes the abstraction of these
learning concepts into a learning element. The reasoning of TSC agents is based
on reinforcement learning, more specifically on the Q-Learning technique [29].

Language Concrete Syntax. The goal of our language is to ease the modeling
of an agent-based simulation by providing building-blocks for its elements. We
followed the method of Strembeck and Zdun [28] for building our DSL, whose
metamodel was presented in the previous section. We adopted a graphical repre-
sentation to reduce the effort required to identify model elements and their rela-
tionships. Figure 4 shows an overview of the concrete syntax of our language. To
illustrate all the language features, the depicted model shows a (partial) combi-
nation of existing simulations: stages, phases, and plans as proposed by Oliveira
and Bazzan [23]; and the learning technique adopted by Mannion et al. [21].

Entities and agents are represented using a box with at least three sections:
the entity or agent name; how it is created; and its attributes. Such represen-
tation is inspired by the UML class diagram. The notation used to represent
attributes consists of its name and cardinality, followed by the definition of how
it is initialized and updated during the simulation. For example, the initializa-
tion of the streams attribute of the Traffic Signal Controller agent is by means
of an expression that refers to the incoming links of the traffic node; while the
updating of the activation attribute is related to a decision capability. The entity
creation is specified in the second section of their boxes, by means of creational
strategies. For the Traffic Signal Controller agent, a designer defined strategy
is selected, in which the designer must specify the quantity of instances and
their location. Expressions can be used to specify both of them. We assume



Fig. 4. Example of the Language Concrete Syntax.

that expressions follow a math notation, such as functional or set notations.
Metaelements for other creational strategies (i.e., files), and other alternatives
for initialization and updating, are included in the complete metamodel, which
is not detailed in this paper due to space restrictions.

In addition to the previous sections, an agent box has an additional section
to specify its capabilities. Each capability can have a set of predefined attributes
that are incorporated into the agent. For example, Flow Control Capability in-
corporates the previously described attributes streams and activation into the
agent. The additional specifications required by an agent capability are repre-
sented as elements connected to the agent by an arrow. For the Flow Control
Capability, its actuator states and actuator groups are represented as tables.
Each row in the Actuator States table represents a state, and the default state is
the one whose default column is checked. Similarly, rows in the Actuator Groups
table represents actuator groups. Each group shown in Figure 4 has only one ac-
tuator, because they are used specifically to exemplify group definitions. In such
cases, the designer can specify no group and use the identifier of actuators to
specify activations, given that one actuator is implicitly created for each stream.

Decision capabilities are represented as boxes whose content describes the
elements required by each capability type. The top section of the box presents
the corresponding capability type (State Machine, Adaptation, or Learning) and
its name for further references. Each capability box includes two connectors,
inspired by the UML component diagram. The connector with a semicircle rep-



resents that the decision capability requires a set of options, i.e. the decision
input. The connector with a filled circle, in turn, represents the decision output,
i.e. the selected option. The input provided to a decision capability is repre-
sented as a connection between its semicircle connector and any model element
that represent decision options, which include actuators, their states and groups,
and the output of other decision capabilities. In the model shown in Figure 4,
the input of the state machine phase 1 is the cartesian product of its input
connections—actuator states and groups. The output of state machines phase 1
and phase 2 are the input of state machine plan 1.

For a state machine capability, states are represented as a list of options
and their transition conditions. From all the options available, the designer can
select only those that are relevant to the state machine. From the simulations
considered in the domain analysis, we assume that the state machine states
are activated sequentially. Consequently, each condition specifies the situation
that triggers the transition to the state right below it—except for the last state,
whose transition is to the first state. A transition condition is specified as an
expression, which can specify a time interval, in addition to any agent attribute
or the current state of the machine and its timer.

Regarding learning capability, its state definition and reward are represented
separately from the learning parameters. The state is represented as a list of
expressions. For example, the state definition of the plan learning capability
consists of three expressions that refer to agent attributes. The reward is repre-
sented as a single expression. In the plan learning example, the reward is defined
as the difference between the queue length in the current and previous timesteps.
The ability to consider attribute values from previous timesteps in expressions
is an additional abstraction incorporated in our metamodel. The adopted no-
tation is to specify the absolute or relative timestep of the attribute enclosed
in braces. The learning parameters section presents the selected reinforcement
learning technique and their specific parameters. The value of these parameters
can be specified statically, or they can refer to expressions or model parameters.

Finally, the representation of an adaptation capability is similar to those
of learning and state machines. It introduces only a section for specifying the
adaptation criteria as an expression. The model of Figure 4 does not include
an adaptation capability; however, its representation is shown in the complete
concrete syntax description available elsewhere.1

3.3 Model-to-code Transformations

Our metamodel and DSL provide the support needed to model agent-based simu-
lations. However, support for code generation is fundamental to reduce the effort
to develop them. In order to show that it is possible to generate runnable simu-
lations from our metamodel, and thus exploit the benefits of an MDD approach,
we specified model-to-code transformations to generate code for NetLogo [31], a
popular agent-based simulation platform.

Model-to-code transformations are performed through the use of production
rules, which transform instantiated concepts of our metamodel to NetLogo code



Table 1. Production Rules (Partial View).

Production Rule Transformation to NetLogo code

agent type For each MMAgent → breed

agent attributes For each MMAttribute → breed-own
For each capability required data structure (e.g., Q-table) → breed-own

agent capabilities For each MMAgentCapability → corresponding capability rule
rl capability For each MMReinforcementLearning → qlearning init.

qlearning init.
qlearning reward def.
qlearnig updt. qtable
qlearning decision

qlearning reward def.
For the MMExpression reward →

reporter, which evaluates the reward expression and returns its value
qlearning init. For each element of MMLearningStateDefinition → set statements for setting up states

For each MMDecisionOption → set statements for setting up actions
qlearnig updt. qtable executes reward reporter to compute its value

set statements for updating the Q-table considering Q-Learning update rule:
Q(s, a) = Q(s, a)

+ α[r + γmax
a′Q(s′, a′) − Q(s, a)]

where:
Q is the Q-table
s, s′ are the current and resulting states
a, a′ are the current and resulting actions
r is the reward
α and γ are learning parameters.

qlearning decision reporter, which selects and reports an action according to a selection policy.
For a ϵ-greedy policy, it would be argmaxaQ(s, a) with probability 1−ϵ, and a random
action with probability ϵ.

statements and blocks. Due to space restrictions, we are not able to present all
production rules needed for our approach. However, Table 1 illustrates some of
the rules for transformation of agents, their attributes and capabilities. Rules
related to the reinforcement learning capability, more specifically for the Q-
Learning [29] technique, are also shown. The production rule column indicates
the rule name which, when applied, is transformed into the content presented
in the transformation column. The meaning of NetLogo statements shown in
this column is as follows: breed and breed-own statements are used to declare
an agent type and their attributes, respectively; reporter is used to declare a
procedure; and set is the assignment statement.

Production rules were implemented as templates using the Xpand5 template
language. Each template describes source code that is generated for its corre-
sponding metamodel element. Generated simulations were verified to assert that
it produces the expected behavior.

4 Evaluation

We conducted an empirical study to evaluate the effort to develop an agent-
based simulation using our approach. As discussed, existing MDD alternatives
cover only conceptual ABMS-modeling and, consequently, models must be im-
plemented using existing agent-based simulation platforms or general purpose
programming languages to have a runnable simulation. We thus compared our
approach to alternatives with which a runnable simulation can be developed.

To select the simulations for our study, we adopted the following criteria:
source code availability; coverage of the decision capabilities of our metamodel;
and use of NetLogo, if possible, given that our MDD approach generates code

5
http://www.eclipse.org/modeling/m2t/?project=xpand



for this platform. As result, one simulation was selected for each decision ca-
pability: (i) fixed traffic signal plans, covering state machine; (ii) self-organizing
traffic lights [10], covering the aspect of adaptation; and (iii) minimization of the
number of stopped vehicles [23], covering learning. The first two simulations are
available for NetLogo6,7, while the last for the ITSUMO simulation platform8.

To measure the effort to develop the existing source code, we used the objec-
tive metrics proposed in a framework [4] for evaluating languages for multiagent
systems. In this framework, the number of manual or automatically produced
software artifacts is an objective metric of the development effort. Manual or
generated lines of code (LoCs) are examples of these software artifacts [4]. This
can be used to measure development effort, as evidenced by many software cost
estimation models, such as COCOMO 2.0 [3], which uses size metrics (e.g. LoC)
to estimate required person-months and calendar months. Our study considered
only code dedicated to TSCs and their behaviors. Comments and code block
delimiters were ignored.

To evaluate the effort to develop an agent-based simulation using our MDD
approach, we modeled these existing simulations using our DSL and we generated
its corresponding source code using our transformation engine. Given that our
DSL uses a graphical representation, we used the atomic model element (AME)
measure unit [2] for a fair comparison. An AME is a visual modeling element that
is equivalent to a LoC. To classify a modeling element of our DSL as an AME, we
adapted a generous estimation rule [2], based on the elements of UML diagrams.
The following elements were counted as AMEs: model parameters; entity or
agent boxes; attributes and their corresponding initialization and update; agent
creation strategy and each of its parameters; agent capabilities, their options and
parameters; actuator states and groups; and connectors of agent capabilities.

Obtained results are shown in Table 2, separated by decision capability.
Columns indicate: (i) AMEs: the number of specified AMEs; (ii) MLoCs: the
number of manually written lines of code; (iii) Effort: the sum of AMEs and
MLoCs, which is the effort to develop the corresponding simulation; and (iv)
GLoCs: the number of lines of code generated from AMEs.

As can be seen, our approach reduces the effort for all the three simulations.
The development effort was reduced by 60.00% (with 116 GLoCs), 81.93%
(103 GLoCs), and 85.60% (297 GLoCs), respectively. For all simulations, TSC-
related code was fully automatically generated. From the complete source code
required to run a simulation, approximately 50% is automatically generated. Ve-
hicle and visualization-related code, which are out of the scope of our approach,
corresponds to the remaining 50%.

It is also possible to observe that the total amount of lines of code (MLoCs +
GLoCs) produced by our MDD approach for TCSs and their behavior is greater
than the total amount of lines of code in the existing NetLogo implementation,
for all simulations. Given that our metamodel considers domain independent ab-

6
http://ccl.northwestern.edu/netlogo/models/TrafficGrid

7
http://turing.iimas.unam.mx/~cgg/sos/SOTL/SOTL.html

8
http://www.inf.ufrgs.br/maslab/traffic/itsumo/



Table 2. Effort Comparison.

Decision Capability Simulation AMEs MLoCs Effort* GLoCs
State Machine
(Fixed Plan)

NetLogo 1 34 35 1
Our MDD approach 14 0 14 116

Adaptation
(Self-organizing Traffic Lights)

NetLogo 1 82 83 1
Our MDD approach 15 0 15 103

Learning
(Reinforcement Learning

ITSUMO 0 257 257 0
Our MDD approach 37 0 37 297

*Effort = AMEs + MLoCs

stractions (e.g., state machines and other decision capabilities), generated code
contains additional statements to implement these abstractions. Existing imple-
mentations, in turn, are built upon application-specific abstractions that may
not generalize to other domains. Nevertheless, GLoCs are not considered in the
development effort metric, because no human effort is required to produce them.

Even if an MDD approach provided code generation for all the elements of
a simulation model, it would provide little benefit if the effort to specify such
model using the provided DSL is similar to or higher than implementing it
from scratch. Based on the presented results, this is not the case of our MDD
approach. Given that an AME is equivalent to a MLoC, the sum of AMEs and
MLoCs produced when using our MDD approach is always lower than when using
NetLogo. Although the number of AMEs produced using our MDD approach is
the highest, it is lower than the number of MLoCs produced using NetLogo,
leading to a reduction in the combined effort. Furthermore, the rule adopted
for counting AMEs led to a fine-grained and platform independent evaluation.
Therefore, a few elements of our DSL were counted as AMEs, but the effort to
specify them is not equivalent to, but lower than, a line of code (e.g., parameters
of a learning technique). As a consequence, the evaluation favored implemented
simulations, giving us a stronger confidence of that our approach reduces the
development effort of agent-based simulations in our domain.

5 Related Work

In this section, we discuss work related to our MDD approach. Kardas [17]
reviewed a selection of model-driven approaches for MAS. Although there are
MDD alternatives that provide modeling languages or source code generation,
the author argues that their efficiency and practicability are under debate since
the amount and quality of the automatically generated MAS components appear
to be insufficient. In most situations, such code is generated only at the tem-
plate level, and a significant amount of code needs to be completed manually.
Additionally, most of the MDD approaches reviewed do not include empirical
evaluation [17]. There is a lack of evaluations that go beyond demonstrating the
use or feasibility of these approaches and thus lacking real evidences of their
concrete benefits. Furthermore, it is important to notice that these alternatives
are focused on multiagent models, and thus simulation aspects are uncovered.



Existing MDD approaches for ABMS focus on particular aspects of MDD.
The AMASON [18] metamodel covers basic structures and dynamics of agent-
based simulations. The MAIA [11] metamodel captures social concepts such as
norms and roles. Ribino et al. [24] propose a conceptual metamodel to be used
as a guideline and concept repository for designing simulations. Overall, these
metamodels support only abstract ABMS-concepts, leaving much left to be de-
veloped in specific applications. In the IODA methodology [20], behaviors are
encoded in a interaction matrix, which can be seen as a DSL for specifying the
simulation dynamics. However, there are no available coarse-grained simulation
building blocks and thus complex interactions must be specified from scratch.
Our MDD approach, in turn, supports concrete concepts and their recurrent
characteristics and capabilities (e.g., control flow and decision capabilities) iden-
tified using a domain analysis that considered existing simulations.

Transformations for code generation were considered in MDA4ABMS [8].
This work provides a light, task-based metamodel, but no DSL is provided. In-
stead, the use of UML activity diagrams is proposed for modeling, complemented
by guidelines for transforming these diagrams into code artifacts. However, hu-
man intervention is required to drive the transformations (e.g., to specify which
tasks should be executed at a simulation step). Our MDD approach provides
automated code generation that produces runnable simulations.

Finally, MDD alternatives in the context of agent-based traffic simulations
were already considered [6]. Their metamodel is based on general, agent-related
concepts such as tasks, goals, and facts. To specify a sophisticated behavior (i.e.,
a learning capability), several elements must be instantiated for modeling it. In
our MDD approach with its DSL, such sophisticated structures were reduced to
their essence and incorporated in the metamodel as ready-to-use building blocks,
reducing the burden of simulation development.

6 Conclusion

Developing agent-based simulations is a challenging task, because of a hetero-
geneous group of involved roles. Model-driven engineering allows focusing on
domain concerns while hiding implementation details. Previous work adopted
MDD in the context of agent-based modeling and simulation in a limited way,
and lack real evidences of its promoted benefits.

In this paper, we explored the use of this approach in the ABMS context by
means of a case study in the adaptive traffic signal control domain. Narrowing
the domain is important because in MDD there is a trade-off between gener-
ality and expressiveness. As result, we provided a metamodel, domain-specific
language and code generation for agent-based simulations in this investigated
domain. The work is founded on a domain analysis performed in a disciplined
way, using existing agent-based simulations. Steps of our domain analysis al-
lowed us to identify the concepts added to our metamodel. These concepts were
identified in our case study and, therefore, we have evidence that they are suit-
able to our particular investigated domain. Nevertheless, concepts, such as the



flow regulator agent, are present in other similar domains, and can be potentially
reused. Examples of such domains are the distribution of provisions to relief cen-
ters in a disaster simulation, or the regulation of the throughput of links in a
data network. Further studies must be performed to validate this.

Our evaluation showed that our approach reduces 60-86% of the develop-
ment effort. These obtained results provide evidence that our approach gives
helpful support for developing agent-based simulations in our domain and that
the conducted domain analysis method is effective.

Our long term goal is to use MDD to allow people with little or no ABMS
expertise to build agent-based simulations. Further work must be conducted
towards this goal. First, experiments with humans must be conducted in order
to evaluate subjective aspects, such as usability and comprehensibility. Moreover,
specifically in our domain, other simulation techniques and aspects, left out of
the scope such as alternative learning models and communication, should be
incorporated to our metamodel.
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18. F. Klügl and P. Davidsson. Amason: Abstract meta-model for agent-based simu-
lation. In MATES, pages 101–114. 2013.

19. K. Kravari and N. Bassiliades. A survey of agent platforms. Journal of Artificial
Societies and Social Simulation, 18(1):11, 2015.

20. Y. Kubera, P. Mathieu, and S. Picault. Interaction-oriented agent simulations:
From theory to implementation. In ECAI, pages 383–387, 2008.

21. P. Mannion, J. Duggan, and E. Howley. An experimental review of reinforcement
learning algorithms for adaptive traffic signal control. In Autonomic Road Trans-
port Support Systems, pages 47–66. Springer, 2016.

22. M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-
specific languages. ACM computing surveys (CSUR), 37(4):316–344, 2005.

23. D. de. Oliveira and A. L. C. Bazzan. Multiagent learning on traffic lights con-
trol: effects of using shared information. In Multi-Agent Systems for Traffic and
Transportation, pages 307–321. IGI Global, 2009.

24. P. Ribino, V. Seidita, C. Lodato, S. Lopes, and M. Cossentino. Common and
domain-specific metamodel elements for problem description in simulation prob-
lems. In FedCSIS, pages 1467–1476, 2014.

25. D. Schmidt. Model-driven engineering. Computer-(IEEE Computer Society,
39(2):25–31, feb 2006.

26. J. Sprinkle, M. Mernik, J. P. Tolvanen, and D. Spinellis. Guest editors’ intro-
duction: What kinds of nails need a domain-specific hammer? IEEE Software,
26(4):15–18, July 2009.

27. T. Stahl, M. Völter, J. Bettin, A. Haase, and S. Helsen. Model-driven software
development: technology, engineering, management. John Wiley & Sons, 2006.

28. M. Strembeck and U. Zdun. An approach for the systematic development of
domain-specific languages. Software: Practice and Experience, 39(15):1253–1292,
2009.

29. C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279–292,
1992.

30. M. Wiering. Multi-agent reinforcement learning for traffic light control. In ICML,
pages 1151–1158, 2000.

31. U. Wilensky. NetLogo, 1999. Center for Connected Learning and Computer-Based
Modeling, Northwestern University. Evanston, IL.




