
Capability Relationships in BDI Agents

Ingrid Nunes

Instituto de Informática
Universidade Federal do Rio Grande do Sul (UFRGS)

Porto Alegre Brazil
ingridnunes@inf.ufrgs.br

Abstract. The belief-desire-intention (BDI) architecture has been pro-
posed to support the development of rational agents, integrating theoret-
ical foundations of BDI agents, their implementation, and the building of
large-scale multi-agent applications. However, the BDI architecture, as
initially proposed, does not provide adequate concepts to produce mod-
ular software components. The capability concept emerged to address
this issue, but the relationships between capabilities have been insuffi-
ciently explored to support the development of BDI agents. We thus, in
this paper, introduce and analyse three possible relationships among ca-
pabilities in BDI agent development — namely association, composition
and generalisation — which are widely used in object-oriented software
development, and are fundamental to develop software components with
low coupling and high cohesion. Our goal with this paper is to promote
the exploitation of these and other mechanisms to develop large-scale
modular multi-agent systems and discussion about this important issue
of agent-oriented software engineering.

Keywords: Capability, Modularisation, BDI Architecture, Agent-oriented
Development.

1 Introduction

The belief-desire-intention (BDI) architecture is perhaps the most adopted ar-
chitecture to modelling and implementing rational agents. It has foundations in a
model proposed by Bratman [3], which determines human action based on three
mental attitudes: beliefs, desires and intentions. Based in this model, Rao and
Georgeff [16] proposed the BDI architecture, integrating: (i) theoretical work on
BDI agents; (ii) their implementation; and (iii) the building of large-scale ap-
plications based on BDI agents. Although their work has been widely used to
model and implement BDI agents in theory and practice in academy, there is no
real evidence that this approach scales up.

Much work on software engineering aims to deal with the complexity of
large-scale enterprise software applications to support their development, and a
keyword that drives this research is modularity. Software developed with modu-
lar software components — i.e. components with high cohesion and low coupling

2 Ingrid Nunes

properties — are more flexible and easier to reuse and maintain. Although mod-
ularity is highly investigated in the context of mainstream software engineering,
it has been poorly addressed not only in work on BDI agents, but also by the
agent-oriented software engineering community. Research in this context is lim-
ited to few approaches, for example, modularisation of crosscutting concerns in
agent architectures with aspects [9, 17] and the use of capabilities in BDI agent
architectures [6, 4].

We, in this paper, investigate the concept of capability, in order to allow the
modular construction of BDI agents, with the aim of supporting the development
of large-scale systems based on BDI agents (hereafter, agents). Capabilities are
modules that are part of an agent, and they cluster a set of beliefs and plans that
together are able to handle events or achieve goals. Therefore, it modularises a
particular functional behaviour that can be added to agents. The capability con-
cept is available in some of the BDI agent platforms [10, 12, 15]; however, there
is divergence on its implementation, and therefore there is no standard structure
for this concept. One communality shared by different capability implementa-
tions is the ability to include capabilities to another, but this relationship also
varies in the different available implementations, as well as their implications
in the agent reasoning cycle at runtime. Moreover, there is a single type of re-
lationship between capabilities in each implementation. This differs from the
object-oriented paradigm, which allows to establish many types of relationships
between software objects.

We thus present an initial work on the investigation of different types of rela-
tionships that may occur between capabilities, introducing three of them, namely
association, composition and generalisation. Besides describing each type of re-
lationship, we analyse how a pair of related capabilities work together in the
context of the agent reasoning. These relationships may be used in combina-
tion to design and implement an agent, and we show examples of this scenario.
The presented relationships provide the basis for a discussion with respect to
engineering aspects of agents, which support the construction agent-based sys-
tems. Our aim is to promote the exploitation of these and other mechanisms
to develop large-scale modular multi-agent systems and discussion about this
important issue of agent-oriented software engineering.

The remainder of this paper is organised as follows. We first introduce work
related to capabilities in Section 2. Then, we describe the different capability
relationships in Section 3, and exemplify their combined use in Section 4. We
next analyse and compare these relationships in Section 5, also showing how each
of the existing BDI platforms that provide the capability concept implement it.
Finally, we conclude this paper in Section 6.

2 Related Work

We begin by presenting work that has been done in the context of capabili-
ties. The capability concept was introduced by Busetta et al. [6] and emerged
from experiences with multi-agent system development with JACK [10, 1], a BDI

Capability Relationships in BDI Agents 3

Part Definition

Identifier The capability identifier, i.e. a name.

Plans A set of plans.

Beliefs A set of beliefs representing a fragment of knowl-
edge base and manipulated by the plans of the
capability.

Belief Visibility Rules Specification of which beliefs are restricted to the
plans of the capability and which ones can be seen
and manipulated from outside.

Exported Events Specification of event types, generated as a con-
sequence of the activity of the capability, that are
visible outside its scope, and their processing al-
gorithm.

Perceived events Specification of event types, generated outside the
capability, that are relevant to the capability.

Capabilities Recursive inclusion of other capabilities.

Table 1: Capability Specification.

agent platform. The goal was to build modular structures, which could be reused
across different agents. In Table 1, we detail the parts that comprise a capability
according to this work. Some of which are specific to the JACK platform, such
as the explicit specification of perceived events.

This work is the result of practical experience, so Padgham and Lambrix
[13] formalised the capability concept, in order to bridge the gap between theory
and practice. This formalisation included an indication of how capabilities can
affect agent reasoning about its intentions. In order to integrate capabilities to
the agent development process, Penserini et al. [14] proposed a tool-supported
methodology, which goes from requirements to code. It identifies agent capa-
bilities at the requirement specification phase, based on the analysis models of
Tropos [5], and is able to eventually generate code for Jadex [15], another BDI
agent platform.

Among the different available platforms to implement BDI agents, such as
Jason1 [2] and the 3APL Platform2, three implement the capability concept:
JACK3 [10], Jadex4 [15, 4], and BDI4JADE5 [12]. As we already discussed how
JACK capabilities are implemented, we next detail the other two implementa-
tions, which include a capability identifier.

A Jadex capability is composed of: (i) beliefs; (ii) goals; (iii) plans; (iv) events;
(v) expressions; (vi) properties; (vii) configurations; and (viii) capabilities. Some
of these parts are platform-specific, such as expressions, which are expressions
written in a language that follows a Java-like syntax and are used for different

1 http://jason.sourceforge.net/
2 http://www.cs.uu.nl/3apl/
3 http://aosgrp.com/products/jack/
4 http://www.activecomponents.org
5 http://www.inf.ufrgs.br/prosoft/bdi4jade/

4 Ingrid Nunes

purposes, e.g. goal parameters or belief values. Beliefs can be used only within
the scope of the capability, exported to outside the capability scope, or abstract,
meaning that a value of a belief outside the capability may be assigned to this
abstract belief. The BDI4JADE capability, on the other hand, is composed of:
(i) a belief base; (ii) a plan library; and (iii) other capabilities. These are the
explicit capability associations. As BDI4JADE is written in pure Java (no XML
files), other properties may be obtained by manipulating the capability parts,
besides the described components.

Given this analysis of existing work on capabilities, we next introduce three
different types of relationships between capabilities. As said before, all the im-
plementations of the capability concept provide limited relationship types, and
after introducing our relationship types, we will revisit these capability imple-
mentations in Section 5, indicating the meaning of their capability relationship.

3 Relationships between Capabilities

According to the object-oriented paradigm, a system is composed of software
objects, which integrate code and data. Such objects are building blocks to
construct complex structures, and can be combined using different forms of rela-
tionships. In this section, we analyse three of these relationships — association
(Section 3.1), composition (Section 3.2), and inheritance (Section 3.3) — in the
context of capabilities.

3.1 Association

Software objects encapsulate both state (represented by attributes) and be-
haviour (represented by methods), and are accessed through its interface, which
is a collection of method signatures. In order for a system to implement func-
tionality, objects collaborate by invoking methods of other objects with which
they are associated.

Similarly, capabilities implement some functionality, and have both state
(represented by beliefs) and behaviour (represented by plans). The main differ-
ence from the object concept is that, while methods that are part of an object
interface can be directly invoked by other objects, plans are dispatched within
the context of the agent reasoning cycle, and its execution is triggered by a
goal or, in some BDI models, an event. As a consequence, in order for an agent
behaviour to be the result of the interaction of more than one capability, an
important question arises: what is a capability interface?

In a capability, beliefs are a piece of encapsulated knowledge, and are ma-
nipulated by the capability’s plans. Consequently, following the principle of in-
formation hiding, the manipulation of beliefs are restricted to the capability.
Plans, which correspond to methods, cannot be explicitly invoked. Therefore,
they are accessible only within the context of the capability, and are not part of
the capability interface as well. Goals, on the other hand, indicate the objectives
that a capability may achieve, and possibly there are different capability plans

Capability Relationships in BDI Agents 5

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Target
Capability

Target
Capability

Source Capability Source Capability

(a) Structure.

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Target
Capability

Target
Capability

Source Capability Source Capability

(b) Visibility (Source).

Fig. 1: Association.

that can be used to achieve such goals. Therefore, goals represent services that
a capability may provide to another, and thus comprise its interface. This is
illustrated in capabilities of Figure 1, in which goals are in the border of the
capabilities. Note, however, that there are goals used only internally, and are
not part of the capability interface.

Given that we now have an interface for capabilities — specified in terms of a
set of goals that a capability may achieve — we are able to associate capabilities
so that they can collaborate. An association is a relationship, shown in Figure 1a,
where a source capability CS uses a target capability CT , by delegating goals to
be achieved by CT . In the context of the agent reasoning cycle, it means that
during the execution of plans that belong to CS , goals that are part of the CT

interface may be dispatched, and only plans that belong to CT are candidates
to be selected to handle such goals. This is similar to the notion of delegating a
goal to another agent, but two agents mean two threads of execution, whereas
two capabilities of one agent consist of a single thread of execution.

Consider the scenario in which we are developing an intelligent robot, which is
responsible for household duties, such as cleaning the floor and washing clothes.
For both these duties, the robot has to move around and, while executing plans
for cleaning the floor and washing clothes, the robot has to achieve a subgoal

6 Ingrid Nunes

move(x, y), i.e. move from a position x to a position y. In this case, our robot
may have three capabilities — FloorCleaning, Laundry, and Transportation

capabilities — and there are association relationships from the FloorCleaning

and Laundry capabilities to the Transportation capability, which has an exter-
nal goal move(x, y), part of its interface.

We present in Figure 1b the visibility of components of the target capability
by the source capability. In this figure, and others presented throughout the
paper, we show what the capability with a white background can access from
the capability with the gray background. All components within the scope of
the target capability are hidden and inaccessible by the source capability, except
the goals that are part of the target capability interface. Such goals may be
dispatched by plans of the source capability. The target capability, on the other
hand, is not aware of the source capability.

Although the association relationship is directed, it may be bidirectional. In
order to better modularise an agent architecture, functionality associated with
two different concerns may be split into two capabilities, and they may use each
other to achieve their goals.

3.2 Composition

The association relationship allows us to modularise BDI concepts into two ca-
pabilities — composed of beliefs, goals, and plans — and each of which should
address a different concern, thus having high cohesion. The connection between
these capabilities is that the execution of at least one plan of the source capa-
bility requires achieving a goal that is part of the target capability. In this case,
each capability uses the knowledge captured by their own beliefs to execute their
plans.

However, there may be situations in which there should be shared knowledge
between capabilities, that is, a capability uses the information stored in other
capability’s beliefs in the execution of its plans. In this case, the composition
relationship is used, which increases the coupling between the two involved ca-
pabilities. This kind of relationship expresses the notion of containment, and its
structure is presented in Figure 2a.

An agent maybe be built by first developing functionality to achieve lower
level goals, and then using it to develop higher level functionality. For example,
assume that the FloorCleaning capability of the robot agent must have goals,
beliefs and plans to both sweep the floor and vacuum the dust, when there are
carpets on the floor. As these are two different concerns, they may be modularised
into two capabilities, each being composed of the external goals related to their
respective duty to be accomplished. The FloorCleaning capability, by having a
composition relationship with the Sweeper and the VacuumCleaner capabilities,
can thus dispatch external goals of these two capabilities — while executing a
plan to clean a room, for instance. This can also be performed using the associ-
ation relationship, but now there are two differences. First, the Sweeper and the
VacuumCleaner capabilities can have plans to handle FloorCleaning’s goals,
so if goals are dispatched in plans of this capability, they may be achieved by

Capability Relationships in BDI Agents 7

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Whole-Capability Whole-Capability

Beliefs

Goals

Plans

Whole-Capability

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Part-
Capability

Part-
Capability

Part-
Capability

(a) Structure.

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Whole-Capability Whole-Capability

Beliefs

Goals

Plans

Whole-Capability

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Part-
Capability

Part-
Capability

Part-
Capability

(b) Visibility (Whole).

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Whole-Capability Whole-Capability

Beliefs

Goals

Plans

Whole-Capability

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Part-
Capability

Part-
Capability

Part-
Capability

(c) Visibility (Part).

Fig. 2: Composition.

plans of the composed capabilities. Second, the FloorCleaning capability may
have knowledge stored in its beliefs, such as those related to the environment,
and they need to be used to both sweep the floor and to vacuum the dust. So
by composing the FloorCleaning capability with the other two, the Sweeper

and VacuumCleaner capabilities may access the FloorCleaning’s beliefs in the
execution of their plans.

The visibility of the components of the two capabilities involved in a com-
position relationship, namely the whole and the part, are shown in Figure 2.
Figure 2b shows that the whole-capability is able to dispatch external goals of
part-capability, but cannot access other components. And Figure 2c details that
the part-capability can access both the beliefs and goals of the whole-capability.

This relationship is transitive. Consider a capability C that is part of a capa-
bility B, which in turn is part of a capability A. Therefore, C can access beliefs
of both B and A in addition to its own beliefs, and A’s goals can be handled by
plans of both B and C, in addition to its own plans. As a consequence, differ-
ent compositions may be performed with capabilities that implement low level
behaviour.

8 Ingrid Nunes

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Parent Capability Parent Capability

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Child
Capability

Child
Capability

(a) Structure.

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Parent Capability Parent Capability

Beliefs

Goals

Plans

Beliefs

Goals

Plans

Child
Capability

Child
Capability

(b) Visibility (Child).

Fig. 3: Inheritance.

3.3 Inheritance

While the association and composition relationships focus on collaborating ca-
pabilities, the goal of the inheritance relationship — which will now be discussed
— is mainly to promote reuse, by generalising common behaviour in a parent
capability and specialising it in children capabilities. This relationship increases
the coupling between the involved capabilities, with respect to the other two
types of relationships. It is also transitive, that is, a child capability inherits
from its parent’s parent.

The development of a multi-agent system may involve building agents that
share a common behaviour, but have some particularities that distinguish one
from another. In this case, we may need to design a capability with a set of
beliefs, goals, and plans, to which other goals, beliefs and plans must be added
to develop particularities. The inheritance relationship thus allows to connect
this common behaviour to specialised variable behaviour. This relationship is
illustrated in Figure 3a.

When a capability extends another, it inherits all the components of the
parent capability. Therefore, the components of a child capability can be seen
as the union of its components — beliefs, goals, and plans — with its parent’s

Capability Relationships in BDI Agents 9

components. Such parent’s components can be accessed within the scope of the
child capability, that is, the child capability can: (i) dispatch both external and
internal parent’s goals; (ii) access and update parent’s beliefs while executing
its plans; (iii) have a goal handled and achieved by the parent’s plans; and (iv)
handle and achieve parent’s goals. This full access to the parent capability’s
components by the child capability is shown in Figure 3b. The parent capability,
in turn, is not aware that there are capabilities that extend its behaviour.

We will now illustrate a situation where inheritance may be used in the con-
text of the development our intelligent robot. Assume that we have physical
robots, which are provided with some basic features, such as walking, moving
arms, and so on, so that they are able to perform different household duties,
depending on the software deployed on them. We are developing robots for both
helping in homes and working on laundries. The Laundry capability should have
plans to wash clothes in the wash machine and to hand washing, if the robot is
for helping at home and, and if it will work on laundries, it should also have com-
ponents to dry cleaning. Therefore, two capabilities may be designed: Laundry
and ProfessionalLaundry. The latter extends the former, adding new beliefs,
goals, and plans needed to provide the dry cleaning functionality.

4 Using Capability Relationships

Given that we presented the three capability relationships, we illustrate their
use in this section. We gave examples of their individual use in the previous
section within the same context, the intelligent robot example. In Section 4.1,
we combine the examples previously given by providing a big picture of the
design of our intelligent robot. In Section 4.2, we provide further examples of
the use of capability relationships in the context of transportation.

4.1 Intelligent Robots

We provided many examples in the context of robot development, where the
capability relationships may be applied to modularise agent concerns. We now
present an integration of these different examples to show how relationships can
be used together in the development of agents. An overview of the design of
the intelligent robots example is presented in Figure 4. This is an overview, and
therefore this figure does not correspond to the complete design of a system,
many agent components are omitted.

We use a simple notation. Capabilities are represented with rectangles, split
into four compartments: (i) capability name; (ii) goals; (iii) beliefs; and (iv)
plans. For relating capabilities, we use the notation previously introduced. And
we represent agents with ellipses, and an agent is an aggregation of capabilities.

The Laundry capability provides the basic functionality for washing clothes,
and it is extended by the ProfessionalLaundryCapability — an instance of
the latter adds the ability of dry washing to the former. The Laundry capa-
bility is associated with the Transportation capability, so that the Laundry

10 Ingrid Nunes

Laundry

handWash
washMachine

clothType

<<external>> wash
<<external>> dry
<<external>> fold

VacuumCleaner

vacuumDust

FloorCleaning

dimension
floorType

<<external>> clean

Sweeper

sweep

ProfessionalLaundry

dryWash

Transportation

<<external>> move(x,y)

Maid Laudress

Legend:
 Agent
 Capability
 Association
 Composition
 Inheritance
 Aggregation

Fig. 4: Example: Intelligent Robots.

capability can dispatch goals related to transportation. Note that, because the
ProfessionalCapability capability extends the Laundry capability, it also in-
herits the association.

The FloorCleaning capability has a goal (clean), which is not handled by
any plan within this capability. It is, however, composed of two other capabil-
ities, each having a plan that can achieve it, so that they can be selected to
achieve the clean goal when appropriate (remember that these capabilities have
other omitted beliefs, goals and plans). The execution of plans of the Sweeper

and VacuumCleaner capabilities also needs goals related to transportation to be
achieved, thus both of them are associated with the Transportation capability.

These capabilities are the building blocks to develop agents. A Maid agent
(that is used to help at home) is an aggregation of both the FloorCleaning

and Laundry capabilities, so that is can perform tasks related to them. The
Laudress agent (who performs duties at laundries) must be able to perform
other tasks related to washing clothes, therefore it is an aggregation of the
ProfessionalLaundry capability, which in turn inherits the behaviour of its
parent capability.

4.2 Driver Agents

We now will introduce a second example, which is in the transportation context.
The objective is to design agents able to drive cars and motorcycles. As above,

Capability Relationships in BDI Agents 11

Driver

Ride

speed
location

<<external>> drive(x,y)
achieveSpeed(s)
turn(dir)

CarDriver

Accelerate
Break
RotateSWheel

MotoDriver

Accelerate
Break
RotateWheel

Motorcycle Car

Legend:
 Agent
 Capability
 Association
 Composition
 Inheritance
 Aggregation RoutePlanner

<<external>> findRoute(x,y)

maps
congestionZones
preferences
MainRoute
FastestRoute
ShortestRoute

GearController

currentGear

<<external>> MonitorGear
ChangeGear

ChangeGear

Fig. 5: Example: Intelligent Robots.

we will show an overview of the design, highlighting important parts of it, and
omitting details. This example is illustrated in Figure 5.

The key functionalities associated with driving are implemented as part of
the Driver capability, which has beliefs with respect to the current speed and
location, an external goal drive(x, y) that it is successfully achieved when the
agent has driven from location x to location y, and internal goals dispatched by
plans whose aim is to achieve the drive(x, y) goal. There are two extensions of
this capability: MotoDriver and CarDriver, which specialise the Drive capa-
bility to add behaviour specific to driving a motorcycle and a car, respectively.
Besides other omitted details, each has its own plans to perform similar tasks,
such as accelerating.

To drive from a location x to y, the Driver capability must first find a
route between these two locations. This is modularised into the RoutePlanner

capability, which has knowledge needed to calculate a route (maps, congestion
zones, agent preferences, etc.), and different plans to find a route. To be able to
find the route, the Driver capability has an association with the RoutePlanner

capability, and consequently it can dispatch the findRoute(x, y) goal.

Finally, there is a complicated part related to driving, which is the control
of gears. This can be modularised in a separate capability, which needs specific
beliefs, goals and plans to do so. However, it also needs the knowledge that is part

12 Ingrid Nunes

of the Driver capability, and consequently there is a composition relationship
between the Driver and GearController capabilities.

In order to build agents able to drive a motorcycle or a car, an agent must
aggregate the MotoDriver capability or CarDriver capability, respectively.

5 Discussion

In this section, we discuss relevant issues with respect to the described capability
relationships. We first analyse them, point out their main differences and the
impact of choosing one or another in Section 5.1. In Section 5.2, we describe
details of how capabilities are implemented in existing BDI platforms, and which
kind of capability relationship they provide. We next discuss in Section 5.3 other
object-oriented concepts, and how they are related to the presented relationships.

5.1 Relationship Analysis and Comparison

We have presented three different kinds of relationships between capabilities,
and understanding their differences in order to be able to choose one to be used
in agent design is important. We thus in this section make this discussion.

First, a key difference among these relationships is their purpose. Associations
should be used when different independent agent parts collaborate to achieve a
higher level goal. This is similar to collaborations among agents, but capabilities
are within the scope of a single agent, i.e. a single thread. Therefore, it is a design
choice to develop two agents, each of which with one capability and collaborating
through messages, or to develop a single agent with two capabilities, collaborat-
ing by dispatching goals to be achieved by the other capability. Composition is
adopted when the agent behaviour can be decomposed into modular structures,
but parts depend on the whole, providing the notion of a hierarchical structure.
And inheritance is used when there is a need for reusing a common set of beliefs,
goals and plans, and then specialising it in different ways.

According to software engineering principles, the lower the coupling between
capabilities, the better. Additionally, components of each capability should have
high cohesion. These presented relationships have different degrees of coupling
between the involved capabilities, so consequently relationships that reduce cou-
pling should be preferred, when possible. We summarise this comparison of the
relationships — discussed in the previous sections — in Table 2, which also in-
dicates the visibility of components of capabilities involved in the relationships.
For example, when there is an association relationship, the whole-capability has
access to the part-capability’s beliefs, while the part-capability has access to the
whole-capability’s beliefs, external goals and internal goals. We also emphasise
the purpose of each relationship. Therefore, choosing a certain capability rela-
tionship is a design choice that not only implies restrictions over the visibility of
the capability components, but also expresses the meaning of the relationship.

Now, we will focus on the impact at runtime of choosing different capability
relationships. When a capability has access to components of another capability,

Capability Relationships in BDI Agents 13

Association Composition Inheritance

Purpose Collaboration Decomposition Extension

Coupling + ++ +++

Visibility

Source/ Beliefs X X
Whole/ External Goals X X
Parent Internal Goals X X

Plans X
Target/ Beliefs
Part/ External Goals X X
Child Internal Goals

Plans

Table 2: Relationship Comparison (1).

Whose goals can be dispatched
within the scope of this capa-
bility?

Whose goals can be
achieved by this ca-
pability’s plans?

Association
Source Source’s goals

Target’s goals (external only)
Source’s goals

Target Target’s goals Target’s goals

Composition
Whole Whole’s goals

Part’s goals (external only)
Whole’s goals

Part Part’s goals Part’s goals
Whole’s goals

Inheritance
Parent Parent’s goals Parent’s goals
Child Child’s goals

Parent’s goals
Child’s goals
Parent’s goals

Table 3: Relationship Comparison (2).

it may use these components at runtime. The access to beliefs is already shown
in Table 2, and this means that a capability can use and modify knowledge to
which it has access. Besides accessing other capability’s knowledge, a capability
involved in a relationship may: (i) dispatch goals of another capability when one
of its plans is executing; and (ii) execute a plan to achieve a goal of another
capability. We show when these two possibilities can happen in Table 3, which
are associated with goal visibility. For example, if a whole-capability (of a com-
position relationship) dispatches one of its goals, this goal may be achieved by
the execution of a whole-capability’s plan or a plan of any the part-capabilities
(and their parts).

5.2 Capabilities in Existing BDI Platforms

In Section 2, we introduced three BDI agent platforms that provide the capability
concept. We will now discuss how each of these platforms provide capability
relationships.

14 Ingrid Nunes

JACK The JACK platform explicitly provides a single type of relationship:
composition, allowing the construction of a hierarchical structure. Nevertheless,
its interpretation is not the same as that adopted in this paper. When this rela-
tionship is declared, the visibility of the involved capabilities’ components should
also be specified. Beliefs may be imported (i.e. shared with its enclosing agent or
capability), exported (i.e. accessible from its parent capability), or private (i.e.
local to the capability). Events have the role of goals in JACK, and in this plat-
form capabilities should explicitly declare the kinds of events that it is able to
handle or post. When declaring this information, an exports modifier is used to
indicate whether events are to be handled only within the scope of the capability
or by any other capability.

Although using these modifiers increases the flexibility of the platform, it
goes against the principle of information hiding. When a belief is exported, any
other capability can access it, and this increases the possibility of breaking the
code. Although in object-orientation sometimes attributes are exposed through
getters and setters, this still preserves encapsulation, as a getter hides if the value
being returned is the value of an attribute or something else. The semantics of
handling exported events is similar to that we adopt with the goal visibility in
compositions.

Note that using solely capability compositions results in limiting capabilities
to be used as hierarchical structures.

Jadex Jadex extended the capability concept of JACK [4], providing a model
in which the connection between an outer and an inner capability is established
by a uniform visibility mechanism for contained components. The implemented
relationship type is also composition, but it is more flexible by allowing the
declaration of abstract and exported components.

In Jadex, any component (beliefs, goals, plans and so on) can be used only
internally, if no modifier is specified. They can be exported, and thus accessed
outside the capability scope. In addition, they may be declared as abstract, and
be set up by an outer capability. This way of modelling capabilities is similar to
that discussed above, and have the same issues.

Jadex was recently extended6 by changing its implementation based on XML
files to an implementation based on pure Java, as BDI4JADE, making an ex-
tensive use of Java annotations. This makes the implementation of capabilities
more flexible, as all object-oriented features can be used.

BDI4JADE BDI4JADE provides a flexible implementation as it is imple-
mented in pure Java. Goals are declared as Java classes, and therefore can be
used in different capabilities. Moreover, Java modifiers can be used to limit goal
visibility, for instance, by using a package visibility.

As the other two agent platforms discussed, it implements only the com-
position relationship. However, beliefs are always private to the capability, or

6 http://www.activecomponents.org/

Capability Relationships in BDI Agents 15

accessible by its included capabilities. A goal is dispatched in a plan with a
specification of its scope. There are two possibilities: (i) it can be handled by
any plan of any capability; or (ii) it can be handled by the capability whose plan
dispatched the goal, or any other included capability. Therefore, this implemen-
tation is the closest to the composition relationship described here.

It is also possible to extend capabilities in BDI4JADE as capabilities are
Java classes. However, if the belief base or plan library of the parent capability
is overridden by the child capability, the inheritance will loose its meaning.

5.3 Further OO Concepts

In this paper, we propose the use of relationships from object orientation to
improve the modularity promoted by capabilities. This is just one of the object-
oriented mechanisms that support the construction of high-quality software sys-
tems from a software engineering point of view. In this section, we discuss other
mechanisms that may be adopted.

First, attributes and methods are always associated with an explicitly spec-
ified visibility, which can be private, protected, or public. JACK and Jadex, as
previously discussed, provide similar concept using the export keyword. Here,
we do not propose to use of visibility modifiers, except for goals, because exposing
capability’s beliefs goes against the principles of encapsulation and information
hiding. In some situations, it is needed, and we provide mechanisms that explic-
itly show why there is a need for sharing beliefs, i.e. when there is a whole-part
structure, and the parts involved. Nevertheless, visibility may be helpful to re-
strict the access of part or child capabilities to components of the whole or parent
capabilities, respectively.

Associations between objects usually have a cardinality specified. If this is
also applied to capabilities, it will allow capabilities to be associated to more
than one instance of a capability. However, dispatching a goal of any of these
capabilities will produce the same effect, unless their fragments of knowledge
have different states. But this is unreasonable. This is also the case of overriding
components of extended capabilities, when using inheritance, or using abstract
capabilities. We are not stating that any of these mechanisms should not be
used, but they should be carefully analysed before being adopted in the context
of capabilities, in order to evaluate their usefulness and their meaning.

Finally, configurations of how capabilities are structured can be investigated,
so as to form design patterns [8], or anti-patterns that should be avoided, such
as object-oriented code-smells [7].

6 Final Considerations

Modularisation plays a key role in software engineering and is crucial for devel-
oping high-quality large-scale software. However, it has limited investigation in
agent architectures, or more specifically BDI agents. Our previous studies have

16 Ingrid Nunes

shown that there is a lack of mechanisms that allow modularising fine-grained
variability in BDI agents [11].

Capabilities are one of the most important contributions to allow the con-
struction of modularised BDI agent parts, increasing maintainability and pro-
moting reuse. Nevertheless, this concept could be further explored to provide
more sophisticated tools to increase the quality of BDI agents from a software
engineering point of view, and supporting the construction of large-scale multi-
agent systems. In this paper, we investigated the use of three types of relation-
ships between capabilities, which are association, composition and inheritance.
Each of which has a particular purpose, and indicates specific access to its compo-
nents. We showed examples of their use, and discussed the implications of each
relationship at runtime. Although some BDI agent platforms provide mecha-
nisms to emulate these relationships, by means of the exportation of capability’s
components, they are not in accordance with the principle of information hiding.
Furthermore, keeping track of all shared beliefs and capabilities that can handle
goals may become an error-prone task, thus making agents susceptible to faults.

The main goal of this paper is to promote the exploitation of capability re-
lationships and other mechanisms to develop large-scale modular multi-agent
systems and discussion about this important issue of agent-oriented software
engineering. In this context, this work has left many open issues to be further
discussed, with respect to capabilities and modularisation into agent architec-
tures: (i) does it make sense to add visibility to all BDI agent components? (ii)
does it make sense to design and implement abstract capabilities? (iii) is there
any situation where there should be cardinality in the association relationship?
and (iv) what is the interface of an agent and of a capability?

References

1. Autonomous Decision-Making Software (AOS): Jack intelligent agents: Jack man-
ual. Tech. Rep. 4.1, Agent Oriented Software Pvt. Ltd, Melbourne, Australia (2005)

2. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons (2007)

3. Bratman, M.E.: Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge, MA (1987)

4. Braubach, L., Pokahr, A., Lamersdorf, W.: Extending the capability concept for
flexible bdi agent modularization. In: Proceedings of the Third International Con-
ference on Programming Multi-Agent Systems. pp. 139–155. ProMAS’05, Springer-
Verlag, Berlin, Heidelberg (2006)

5. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

6. Busetta, P., Howden, N., Rönnquist, R., Hodgson, A.: Structuring bdi agents in
functional clusters. In: 6th International Workshop on Intelligent Agents VI, Agent
Theories, Architectures, and Languages (ATAL). pp. 277–289. ATAL ’99, Springer-
Verlag, London, UK, UK (2000)

7. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (1999)

Capability Relationships in BDI Agents 17

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley (1995)

9. Garcia, A., Lucena, C.: Taming heterogeneous agent architectures. Commun. ACM
51(5), 75–81 (May 2008)

10. Howden, N., Rnnquista, R., Hodgson, A., Lucas, A.: Jack intelligent agentsTM:
Summary of an agent infrastructure. In: The Fifth International Conference on
Autonomous Agents. Montreal, Canada (2001)

11. Nunes, I., Cirilo, E., Cowan, D., Lucena, C.: Fine-grained variability in the de-
velopment of families of software agents. In: Sabater-Mir, J. (ed.) 7th European
Workshop on Multi-Agent Systems (EUMAS 2009). Cyprus (December 2009)

12. Nunes, I., Lucena, C., Luck, M.: Bdi4jade: a bdi layer on top of jade. In: ProMAS
2011. pp. 88–103. Taipei, Taiwan (2011)

13. Padgham, L., Lambrix, P.: Formalisations of capabilities for bdi-agents. Au-
tonomous Agents and Multi-Agent Systems 10(3), 249–271 (May 2005)

14. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From capability specifications
to code for multi-agent software. In: 21st IEEE/ACM International Conference on
Automated Software Engineering. pp. 253–256. ASE ’06, IEEE (2006)

15. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A bdi reasoning engine. In:
Multi-Agent Programming. pp. 149–174. Springer (9 2005)

16. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings of
the First Intl. Conference on Multiagent Systems. San Francisco (1995)

17. Sant’Anna, C., Lobato, C., Kulesza, U., Garcia, A., Chavez, C., Lucena, C.: On the
modularity assessment of aspect-oriented multiagent architectures: a quantitative
study. Int. J. Agent-Oriented Softw. Eng. 2(1), 34–61 (Jan 2008)

