
ArchViz: a Tool to Support Architecture Recovery Research

Vanius Zapalowski1, Ingrid Nunes1, and Daltro José Nunes1

1Prosoft Research Group – Instituto de Informática
Universidade Federal do Rio Grande do Sul, Brazil

{vzapalowski,ingridnunes,daltro}@inf.ufrgs.br

Abstract. In order to produce documented software architectures, many soft-
ware architecture recovery methods have been proposed. Developing such
methods involves a not trivial data analysis, and this calls for different data
visualisations, which help compare predicted and target software architectures.
Moreover, comparing methods is also difficult, because they use divergent mea-
surements to evaluate their performance. With the goal of improving and sup-
porting architecture recovery research, we developed the ArchViz tool, which
is presented in this paper. Our tool provides metrics and visualisations of soft-
ware architectures, supporting the analysis of the output of architecture recovery
methods, and possibly the standardisation of their evaluation and comparison.
Video link: http://youtu.be/Gjo5cOzk4kM .

1. Introduction

An explicitly documented software architecture plays a key role in software development
as it keeps track of many design decisions and helps maintain consistence in the developed
software. It provides useful knowledge to deal with the software evolution accordingly to
planned architectural principles captured by a high-level model — usually represented in
a graphical model. Despite of the importance of having a documented architecture, many
systems lack proper architectural documentation.

Software architecture recovery (SAR) methods aid software architects in the task
of inspecting the source code to understand an implemented software when there is no
architectural documentation available or it is outdated. SAR methods have been pro-
posed to reduce the human effort needed to perform this task. Such methods use different
inputs (e.g., dependencies, semantics, and patterns) and a variety of metrics (e.g., pre-
cision, recall, and distance) to produce recovered architectures. Moreover, SAR studies
focus on the measurement of certain properties lacking a visual representation of their
recovered and target architectures [Ducasse and Pollet 2009]. Consequently, the process
of evaluating and analysing results of a SAR method is a complex and time-consuming
activity [Garcia et al. 2013], given the combination of possible sources of information,
evaluation metrics, and results analysis.

Different tools have been proposed in the literature to improve software architec-
tures, e.g. [Lindvall and Muthig 2008], and most of them focus on checking architecture
conformance or compliance. On the other hand, ArchViz, the tool introduced in this pa-
per, has the goal of supporting SAR research. Therefore, the purpose of this new tool
is the key difference from other existing tools in the context on software architecture.
In previous work [Zapalowski et al. 2014], we faced the problems discussed above in a

Sessão de Ferramentas

13

http://www.inf.ufrgs.br/prosoft
http://www.inf.ufrgs.br
http://www.ufrgs.br
http://youtu.be/Gjo5cOzk4kM

study to evaluate the relevance of code-based characteristics to identify modules of recov-
ered architectures. To address such problems, we implemented a web-based tool, named
ArchViz, able to partially automate the analysis of recovered architectures, as no other
similar tool was available. Therefore, our tool emerged from our own (real) need for sup-
porting our research, and its effectiveness is indicated by the research results we were able
to derive from our data analysis with the support of ArchViz. Our tool provides evalu-
ation metrics of recovered software architectures using well-known information retrieval
measures. In addition, our tool generates three visualisations (tree-map, module depen-
dencies graph and element dependencies graph) of recovered (or predicted) and target
architectures in order to help understand the results of the recovery process.

This paper is organised as follows. Section 2 describes ArchViz, presenting its
main features. Next, Section 3 discusses existing tools related to software architecture
visualisation and their support to SAR. Finally, we present the final remarks in Section 4.

2. The ArchViz Tool

This section presents the contributions that ArchViz provides to support SAR research.
Our intended users are researchers, which are able to compare a target architecture (or-
acle) with a recovered architecture, and verify metrics that indicate the classification ef-
fectiveness. First, we describe in Section 2.1 ArchViz’s architecture and how to use it,
presenting its user interface. In Section 2.3, we present the two main features of ArchViz:
(i) measurement of well-known information retrieval metrics, which are adopted in the
context of general-purpose classification problems, and are detailed in Section 2.2; and
(ii) plotting of three different graphical models of recovered and target architectures.

In order to illustrate the functionalities of ArchViz, we present the eval-
uation and analysis of one of the five subject system used in our previous
work [Zapalowski et al. 2014], named OLIS. Thus, the metrics and visualisations pre-
sented in the remainder of this paper are extracted from OLIS, which is an agent-based
product line that provides personal services for users.

2.1. Architecture and User Interface

ArchViz is a web-based application implemented in Ruby using the Ruby on Rails
(RoR)1 framework. Consequently, the architecture of our tool follows the Model–View–
Controller architectural pattern adopted by RoR. In our implementation, the main task of
each architectural module are: the Model represents and stores imported architectures;
the Controller calculates the implemented evaluation metrics; and the View plots the ar-
chitectural visualisations using D32 JavaScript library.

To start using ArchViz, users should import a software project using the Import
Project option available in the menu, which allows users to provide input data. Projects’
details must be specified in two Comma-Separated Values (CSV) files: (i) the first with
information about to which module each architectural element belongs in the recovered
and in the target architectures; and (ii) the second with all the dependencies between
architectural elements. The adequate format of such files is detailed in the functionality

1Available at http://rubyonrails.org/
2Available at http://d3js.org

Sessão de Ferramentas

14

http://rubyonrails.org/
http://d3js.org

of importing projects. After importing a project, our tool summarises and presents the
data related to it, as illustrated in Figure 1.

Figure 1. ArchViz User Interface.

2.2. Architecture Recovery Metrics

We selected general purpose metrics to evaluate multi-class prediction of machine learn-
ing algorithms, defined by Sokolova and Lapalme [Sokolova and Lapalme 2009], as the
metrics to evaluate the quality of the recovered architecture, because they are also ap-
plicable to our context. Using these metrics, we are able to standardise the analysis of
results of SAR methods, given that this set of metrics only needs the recovered and target
architectures to be calculated. The metrics definitions are given in Table 1, following this
notation: K is the set of proposed architectural modules; i is a module such that i ∈ K;
|K| represents the cardinality of K; tpi are the true positives of i; tni are the true nega-
tives of i; fpi are the false positives of i; fni are the false negatives of i; and |i| is the
number of elements in the module i. The definition of what is an element is specific to
each recovery method: it can be a class, a components, a procedure, and so on.

2.3. Architecture Visualizations

Because of the complexity of large-scale software, it is difficult to represent it in a sin-
gle simple model. Software architecture visualisation helps stakeholders involved with
software development to understand the concepts adopted in their applications using a
high-level representation. Most of the SAR approaches focus on presenting metrics to
evaluate their results, and they do not provide architectural visualisations that enable a
finer-grained analysis of results. This is helpful particularly to researchers, because hu-
mans can derive findings based on visual models and data abstractions better than ma-
chines [Keim et al. 2008]. Therefore, we proposed and implemented three visualisations
that aim to improve the analysis and comparison of recovered and target architectures.

We next present the three visualisations that our tool provides: (i) Tree-map,
which provides a visual analysis of the recovered architecture using a hierarchical rep-
resentation (Section 2.3.1); (ii) Module Dependencies Graph, which details dependencies

Sessão de Ferramentas

15

Table 1. Metrics implemented in ArchViz.

Metric Description Formula

Precision
The precision measures the correctness of the overall recovered
architecture independently from architectural modules size. It
considers only the tp of each module.

K∑
i=1

tpi

K∑
i=1

|i|

Average
Precision

To evaluate the per-module precision, the average precision
measures the agreement between the recovered and the target
architecture for each module. It only considers the cases where
the recovered classification of the architectural elements agrees
with the target architecture.

K∑
i=1

tpi
tpi+fpi

|K|

Average
Recall

By calculating the average recall, we obtain an average of the
per-class effectiveness of an SAR method to identify architectural
modules. To calculate the average recall, we consider the tp and
fn of each module.

K∑
i=1

tpi
tpi+fni

|K|

Average
Accuracy

The average accuracy measures the correctness of each module
and the distinctness from the other modules. It evaluates the cor-
rect architectural elements, tp and tn, of each recovered module.
The average accuracy is useful to measure the recovery method
per-module effectiveness.

K∑
i=1

tpi+tni
tpi+tni+fpi+fni

|K|

Average
F-measure

The average F-measure combines the average precision and av-
erage recall to provide one metric that indicated both the overall
correctness and the module prediction quality. This metric mea-
sures the relationship between correctly predicted elements and
those given by a metric based on a per-module average.

2∗avg prec∗avg rec
(avg prec+avg rec)

among modules, and their respective sizes (Section 2.3.2); and (iii) Element Dependencies
Graph, which presents a fine-grained visualisation of architectural elements showing only
the inter-modules dependencies (Section 2.3.3). Note that, in our tool, all visualisations
are shown together with the metrics described previously. Moreover, the last two visu-
alisation types show two graphs corresponding to the recovered and target architectures,
allowing a side-by-side comparison.

2.3.1. Tree-map

The tree-map visualisation is a two-dimensional hierarchy graph created by Shneider-
man [Shneiderman 1992] to analyse hard disk usage. Similarly to software architectures,
the disk folder hierarchy represents categories, and files are leaf elements that are in a
folder. A common problem to visualise the data is to represent the relevance of more
than two attributes in a single chart. In the hard disk usage, for example, files have a
parent folder and size, which means that we need to plot separate graphs for file usage
and for folder usage, to visualise both attributes using a Cartesian coordinate system.
Shneiderman proposed a tree-organisation structure, where each element is represented
as a rectangle and attributes can be specified by colours, sizes or hierarchy position of the
rectangles. Then, the hard disk usage can be represented in a single graph, where folders

Sessão de Ferramentas

16

are outside rectangles with its file elements inside. Additionally, their sizes can represent
the amount of disk usage.

Figure 2. Tree-map Visualisation of the OLIS Recovered Architecture.

As in hard disk usage, a software architecture typically has a hierarchical structure:
architectural elements belong to modules. So, we mapped software architectures to the
tree-map representation, in order to understand the predicted results of the recovered and
target architectures. We represent both architecture versions in a single graph to visualise
predicted results. Figure 2 is an example of the tree-map visualisation, where the outer
rectangles are the target architectural modules, the inner rectangles are the architectural
elements with their name, and colours of architectural elements are assigned according
to the recovered module to which they belong. The target module names, shown in the
upper right hand side of Figure 2, are possibly from a manually recovered architecture. In
the case when the recovered architecture matches the target architecture completely, all
outer rectangles are coloured by only one colour and each outer rectangle has a different
colour from the others. Figure 2 illustrates a scenario in which the recovered architecture
differs from the target architecture. As can be seen in Figure 2, the outer rectangles major
colour defines its recovered architectural module, i.e. in Figure 2, the lower left rectangle
corresponds to the Data module and the upper left rectangle corresponds to the UI module.

Figure 2 thus indicates the recovered modules and the assignment distribution of
architectural elements to the target modules. Furthermore, this representation confirms
the information provided by the module accuracy: (i) if a single colour is concentrated in
a single module, accuracy is high; and (ii) otherwise, it is low. Additionally, the tree-map
visualisation combines the recovered and target architecture allowing a visual comparison
of the architectural measures extracted from a SAR method.

2.3.2. Module Dependencies Graph

The module dependencies graph is a coarse-grained view that aims to provide an overall
view of the system. It is similar to the the most common notation to represent archi-
tectures used, where architectural modules are represented as nodes and communication
among them as edges. This representation improves architecture understanding, because

Sessão de Ferramentas

17

it exposes the main system concepts, and presents them in a concise way, showing both
the architectural modules and how they communicate to each other. Figure 3 shows an
example of this notation, presenting the architecture of OLIS, which uses a layered archi-
tectural pattern.

Figure 3. Example of a Typical Architecture Model.

Although this traditional model presents, in a high-level view, the main architec-
tural modules and their communication, it lacks important details needed to compare the
recovered and target architectures. Furthermore, it undertakes architectural information
that could be represented in an architectural visualisation, such as the intensity of the
dependency among two modules, which is helpful for understanding a recovered archi-
tecture. Analysing the representation of the OLIS architecture in Figure 3, it is impossible
to identify the intensity of dependencies among modules. In this usual representation, the
module sizes represent just the existence of architectural modules and they do not corre-
spond to the size of the modules in the system.

To enrich the information provided by this traditional module dependencies graph,
we implemented the module visualisation with modifications. The same architecture pre-
sented in Figure 3 is represented in ArchViz as shown in Figure 4(a). In ArchViz, the
modules are defined by their size and colour. Their colours characterise each module role
and their sizes are proportional to the number of architectural elements that they have.
Additionally, we add labels to the modules nodes with the architectural role and number
of elements that they have. The edges represent the communication among modules spec-
ifying the dependency hierarchy, i.e. an edge in red means that the red module uses the
module that it is linked to. Moreover, the edge thickness is proportional to the dependency
level that the modules has, e.g. the dependency among the Agent and Model modules is
stronger than that of the Agent and Business modules, in the presented OLIS architecture.

2.3.3. Element Dependencies Graph

The element dependencies graph is the finest-grained architectural visualisation that
ArchViz provides. It presents the dependencies among architectural elements classify-
ing them into architectural modules. This visualisation represents elements as nodes, and
the node colours characterise to which module they belong. The edges are coloured by
the inter-module dependency, similarly to the module dependencies graph. This repre-
sentation disregards the intra-module dependencies to reduce the number shown edges —
otherwise the graph would provide too much information. As an example, we present the
OLIS target architecture using the element dependencies graph in Figure 4(b). The graph

Sessão de Ferramentas

18

(a) Module Dependencies. (b) Element Dependencies.

Figure 4. OLIS Graphs.

shows: (i) five modules, (ii) the inter-modules dependencies, and (iii) the 211 elements of
the system.

3. Related Work
Besides previous work we already discussed, which defines adopted metrics and inspired
our visualisations, there are important studies that are closely related to ArchViz. We
discuss these studies in this section.

A metric that is commonly used to evaluate recovered architectures is the MoJo
distance metric [Tzerpos and Holt 1999]. It is a domain-specific metric to measure the
number of steps needed to obtain the target architecture, given a recovered architecture.
It was not implemented in ArchViz due to problems on its application in some specific
SAR methods that were recently reported [Garcia et al. 2013].

Bunch [Mancoridis et al. 1999] is one of the first tools that support all the soft-
ware decomposition process, from the manual investigation to the recovered architecture
visualisation. It generates subsystems and creates a fine-grained representation of the
software based on the architectural element dependencies, similar to that presented in
Figure 3. Differently from ArchViz, Bunch’s objective is to obtain a recovered architec-
ture. Thus, it does not comprise the evaluation metrics and comparisons of the recovered
against the target architecture.

An approach that compares architectural models was proposed by Beck and
Diehl [Beck and Diehl 2010]. Their approach evaluates the similarity of architectural el-
ement dependencies using a matrix dependencies representation. This method points out
similarities and divergences of the architectures in the architectural elements level. There-
fore, it analyses only the similarities in the elements, and modules information, such as
modules communication, are not taken into account.

4. Conclusion
Software architecture recovery (SAR) methods have been proposed to decrease the effort
needed to maintain up-to-date architectural documentation of software systems. These

Sessão de Ferramentas

19

methods apply different evaluation metrics to analyse recovered architectures and to be
used as basis to derive their findings. In addition, SAR methods often lack a visual repre-
sentation of their recovered and target architectures, which are essential to analyse results.

We built ArchViz to address these issues to support SAR research, by providing
measurement of evaluation metrics and architecture visualisation representations. The
implemented metrics provide statistical evidences of the level of agreement between re-
covered and target architectures. Moreover, we provided visualisations and side-by-side
comparisons of recovered and concrete architectures contribute with useful knowledge
to understand results of a method, which helps in the process of refining and improv-
ing it. Thus, ArchViz is a tool that reduces the effort needed to analyse the recovered
architectures, providing a useful set of metrics together with an automatic generation of
architectural models to support the SAR research.

It is important to highlight that one of the subject systems investigated in our
research on SAR using ArchViz is from the industry. However, this system was not
presented in this paper (but the OLIS) due to a confidentiality agreement. Although we
used the tool in a real world scenario, we have not used it with (very) large scale systems,
and this is part of our future work.

References
[Beck and Diehl 2010] Beck, F. and Diehl, S. (2010). Visual comparison of software archi-

tectures. In International Symposium on Software Visualization, pages 183–192.

[Ducasse and Pollet 2009] Ducasse, S. and Pollet, D. (2009). Software architecture recon-
struction: A process-oriented taxonomy. Trans. Softw. Eng., pages 573–591.

[Garcia et al. 2013] Garcia, J., Ivkovic, I., and Medvidovic, N. (2013). A comparative anal-
ysis of software architecture recovery techniques. In International Conference on Au-
tomated Software Engineering, pages 486–496.

[Keim et al. 2008] Keim, D., Mansmann, F., Schneidewind, J., Thomas, J., and Ziegler, H.
(2008). Visual analytics: Scope and challenges. In Visual Data Mining, pages 76–90.

[Lindvall and Muthig 2008] Lindvall, M. and Muthig, D. (2008). Bridging the software
architecture gap. Computer, 41(6):98–101.

[Mancoridis et al. 1999] Mancoridis, S., Mitchell, B. S., Chen, Y., and Gansner, E. R.
(1999). Bunch: A clustering tool for the recovery and maintenance of software system
structures. In International Conference on Software Maintenance, pages 50–59.

[Shneiderman 1992] Shneiderman, B. (1992). Tree visualization with tree-maps: 2-d space-
filling approach. Transactions Graphics, pages 92–99.

[Sokolova and Lapalme 2009] Sokolova, M. and Lapalme, G. (2009). A systematic analysis
of performance measures for classification tasks. Inform. Process. Manag., pages 427–
437.

[Tzerpos and Holt 1999] Tzerpos, V. and Holt, R. C. (1999). Mojo: A distance metric for
software clusterings. In Working Conference on Reverse Engineering, pages 187–193.

[Zapalowski et al. 2014] Zapalowski, V., Nunes, I., and Nunes, D. (2014). Revealing the
relationship between architectural elements and source code characteristics. In Inter-
national Conference on Program Comprehension, pages 14–25.

Sessão de Ferramentas

20

