
Reengineering Network Resilience Strategies using
a BDI Architecture

Ingrid Nunes and Alberto Schaeffer-Filho

1Instituto de Informática
Universidade Federal do Rio Grande do Sul (UFRGS)

Porto Alegre, Brazil

{ingridnunes,alberto}@inf.ufrgs.br

Abstract. Network resilience is a challenging task. It requires constantly mon-
itoring network devices to guarantee quality of service and to address potential
challenges to network operation, such as malicious attacks, equipment failures
or device misconfiguration. Although many approaches that provide automated
support to this task rely on autonomous and pro-active software components,
they do not exploit domain-neutral agent-based techniques, which can arguably
provide flexible solutions to handle situations unpredicted at design time. In
this paper we present an investigation in which we show how a pattern-based
approach that addresses a distributed denial-of-service (DDoS) attack using
policy-driven Self-Managed Cells (SMCs) can be reengineered using a BDI ar-
chitecture and a logic-based language. Based on the new proposed design, we
derive lessons learned, which discuss similarities, strengths and weaknesses of
each approach. One of the main contributions of this study is to explore the
synergy between network resilience and multi-agent system research areas.

1. Introduction
Computer networks are becoming increasingly critical in supporting software appli-
cations related to business, leisure and daily life in general. Thus it is fundamen-
tal to support reliable network services. This is the main concern of network re-
silience [Sterbenz et al. 2010, Smith et al. 2011], which involves constantly monitoring
network devices to guarantee quality of service and to address potential challenges to net-
work operation, such as malicious attacks, equipment failures or device misconfiguration.

Due to its complex nature, network resilience combines ideas from sev-
eral research areas, such as autonomic computing [Lupu et al. 2008] and machine
learning [Nguyen and Armitage 2008]. Approaches that provide automated sup-
port to this task typically rely on autonomous and pro-active software compo-
nents [Nguengang et al. 2006], which are related to the definition of a (software)
agent [Jennings 2001]. Although some of these approaches refer to these components
as agents, they do not exploit domain-neutral agent-based techniques, which can arguably
provide flexible solutions to handle situations unpredicted at design time.

In this paper, we discuss how network resilience strate-
gies [Schaeffer-Filho et al. 2012] can be reengineered using a widely used agent
architecture, namely the BDI architecture [Rao and Georgeff 1995]. Initially, re-
silience strategies are described in terms of management patterns to address specific
network challenges that are implemented using policy-driven Self-Managed Cells

AutoSoft

25



(SMCs) [Lupu et al. 2008]. In particular, we focus on a pattern for a Distributed Denial
of Service (DDoS) attack. As result of this investigation, we propose a new agent-based
solution to address this challenge, structured with BDI agents — composed of beliefs,
goals and plans — using a logic-based language. We also detail domain-specific steps
of the BDI reasoning cycle, such as belief revision and goal generation. Based on the
new proposed design, we derive lessons learned, which discuss similarities, strengths and
weaknesses of each approach.

Our main contribution is thus the investigation of a new design solution for pro-
viding network resilience, using agents and a BDI architecture. Our aims are: (i) to better
understand the synergy between the network resilience and multi-agent system research
areas; (ii) to show the applicability of an existing agent-based approach to a real-world
problem; and (iii) to provide a flexible alternative solution to network resilience.

This paper is organised as follows. Section 2 provides background on network re-
silience and the pattern-based approach in which this work is based on. Section 3 presents
how the current approach can be reengineered using a BDI architecture, detailing individ-
ual agent components and how they are used to form a multi-agent system. Section 4
discusses lessons learned derived from our investigation. Finally, related work is outlined
in Section 5 and the concluding remarks are presented in Section 6.

2. Background
This section describes the background work on network management and network re-
silience, and discusses how previous work advocated means of composing and federating
resilience mechanisms into management patterns.

2.1. Network Management and Resilience Strategies

Central to a resilience strategy is the management and reconfiguration of detection and
remediation mechanisms, which operate as autonomous components in the network in-
frastructure. On the one hand, detection mechanisms such as link monitors, anomaly
detection systems and traffic classifiers permit the identification and categorisation of
anomalies and attacks to the network. On the other hand, remediation mechanisms such
as rate limiters, load balancers and firewalls can be used in the subsequent mitigation of
these challenges. In previous work [Schaeffer-Filho et al. 2012], we have investigated
how to flexibly organise network mechanisms providing detection and remediation func-
tionality in order to combat specific types of network attacks, such as Distributed Denial
of Service (DDoS) and worm propagations.

The various mechanisms can be deployed and activated on different parts of the
network topology. Therefore, the functions of monitoring, anomaly detection, rate limit-
ing and so on could be carried, for example, at the edge of the subnetwork under attack.
We assume that mechanism configuration and adaptation can be expressed in terms of
event-triggered condition-action (ECA) policies [Sloman and Lupu 2002]. Policies allow
the specification of how a component must react in response to specific types of events, in
a declarative manner. These mechanisms can be configured and federated into resilience
strategies to address a specific type of challenge or attack, as the one depicted in Fig-
ure 1. This strategy consists of a number of stages, detailed next, which are triggered by
declarative policies according to the conditions monitored in the network.

AutoSoft

26



:Link 
Monitor

:Anomaly
Detection

:Flow
Exporter :Classifier :Rate

Limiter

notify_load(name, rate, link)

classify(flow)

limit(flow, rate)

limit(link, rate)

start(link)

notify_detection(IPAddress) limit(IPAddress, rate)

setThreshold(t)

notify_load(name, rate, link)

notify_detection(IPAddress)

notify_classification(label, flow) 

start(IPAddress, 
samplingRate, length)

notify_new_record(flow)

Figure 1. DDoS resilience strategy using a number of mechanisms that must
operate autonomously in the network [Schaeffer-Filho et al. 2012].

1. Policies configured in the Link Monitor should monitor the incoming traffic rate on
the ingress link and raise an alarm (notify load) in case the traffic volume observed
exceeds a given threshold.

2. On receiving this event, an initial rate limiting of the link can be performed by
the Rate Limiter. Policies are used to filter a percentage of all incoming traffic in
order to protect downstream servers.

3. In addition to the preventive rate limiting started at this point, the Anomaly Detec-
tion component can further start processing packets to identify the destination IP
address of the victim.

4. As a result, it raises an event (notify detection) when one destination IP address
accounts for 60% of all packets. This additional evidence permits the reconfigu-
ration of the Rate Limiter to drop 70% of the traffic destined for the victim only.
Legitimate traffic that is not destined for the victim is now allowed to go through.

5. If the attack is sustained for a longer period, the Classifier and Flow Exporter
mechanisms are started. Classifier attempts to identify the specific attack flows.
Classification events are generated (notify classification), and rate limiting is con-
fined just to the attack flow, and legitimate traffic is allowed to continue.

2.2. A Pattern-based Approach for Network Resilience
Previous work has introduced the Self-Managed Cell (SMC) [Lupu et al. 2008] as a
paradigm for structuring the management aspects of ubiquitous and network applications.
An SMC typically consists of a set of autonomous hardware and software components
with management and adaptation strategies specified as easily modifiable policies. For
example, SMCs may represent autonomous components supporting resilience function-
ality, e.g., link monitoring, anomaly detection and traffic shaping. These components

AutoSoft

27



must autonomously react to conditions monitored in the network, such as increased traf-
fic load or suspicious network packets. In essence, an SMC provides an implementation
of a MAPE-K loop [IBM 2005]. In the SMC model, ECA policies are used to specify
adaptation rules that determine the reconfiguration actions to be performed in response
to changes in the context, component failures, new components joining the system, or
application-specific alarms.

In order to assemble and federate SMCs into large-scale applications we rely on
the notion of management patterns [Schaeffer-Filho et al. 2014]. A management pattern
is a configuration, including policies to be deployed and properties to be satisfied, be-
tween a set of SMC types. For example, a management pattern for addressing a DDoS
attack will contain the policies and configurations necessary for a set of mechanism types
such as the ones listed above. SMC types are specified in the pattern using the notion of
roles [Lupu et al. 2008], which are placeholders for actual instances that will be manually
assigned during runtime by a human expert. The use of patterns supports the construction
of SMC interactions in a methodical manner, by reusing simpler abstractions as design
elements of a more complex interaction. The exchange of policies, events and interfaces
define the task-allocation, communication and structural aspects, respectively, of a cross-
SMC interaction. Ultimately, management patterns can capture best practices and the
experience of network operators into reusable policy configurations, which can be auto-
matically deployed in the network when a challenge manifests.

3. Providing Network Resilience with BDI agents
Previous work [Schaeffer-Filho et al. 2012] has shown using simulations that the pro-
posed pattern to handle DDoS attacks can be effective. Nevertheless, such an approach
together with ECA policies focuses on establishing actions that should be performed given
the occurrence of an event, without capturing the reasoning why a certain set of actions are
the more adequate to be performed. The BDI agent architecture [Rao and Georgeff 1995]
— adopted in this work — captures it in goals: the BDI architecture decouples what
should be done from how it should be done. Consequently, it is possible to perform a
higher-level reasoning that first chooses goals to be achieved, and then selects which ac-
tions are more adequate to achieve them according to the current context.

In this section, we show how the previous solution proposed to provide network
resilience can be modelled using agent components following a BDI architecture and
using a logic-based language, similar to the AgentSpeak(L) language [Rao 1996]. We
first present, in Section 3.1, individual BDI agent components, such as goals and plans,
and then show, in Section 3.2, how such components are used to form a multi-agent
system able to respond to DDoS attacks.

3.1. Individual BDI Agent Components
BDI agents are software components structured with three main finer-grained compo-
nents, namely beliefs, goals and plans. Such agents are provided with a reasoning cycle,
including the following customisable steps: (i) belief revision: based on perceived events,
agents update their current beliefs; (ii) goal generation: agents generate goals that they
want to achieve, considering their current state; (iii) goal deliberation: agents choose,
among their current goals, which they are committed to achieve; and (iv) plan selec-
tion: agents select a plan to achieve each goal they are committed to achieve. Given this

AutoSoft

28



internal structure of each individual agent, next we present details on the finer-grained
components that are part of our multi-agent solution to prevent DDoS attacks.

3.1.1. Belief Revision

Different network devices (which can be regarded as agents) are connected by links,
where network traffic flows. Under normal conditions, only part of the link bandwidth
is used, and the link usage should always be below a given threshold. Such links are part
of the environment in which agents are located, and agents perceive events that occur in it.
Therefore, agents perceive how much of the link capacity is being used, i.e. usage(link),
and have a belief — overUsage(link) — that is updated according to the perceived link
usage, as shown in Equations 1 and 2. Such equations are rules, in which the expression
in the right-hand side of the symbol −→ takes place when the expression in the left-hand
side is true.

greater(usage(link), threshold) −→ belief(overUsage(link)) (1)
lesseq(usage(link), threshold) −→ belief(¬overUsage(link)) (2)

When the link bandwidth is being used above the established threshold, there are
two possibilities: this is due to either regular users that, for a certain reason, are deviating
from the usual behaviour, or a malicious attack. Therefore, when agents perceive that the
link bandwidth is being used above the threshold, they do not know if this is associated
with a regular usage or not, i.e. they believe that∼ regularUsage(link). This absence of
knowledge is shown in Equation 3, where∼means that regularUsage(link) is unknown.

overUsage(link) −→ belief(∼ regularUsage(link)) (3)

3.1.2. Goal Generation and Deliberation

The belief revision step updates beliefs according to perceived external events. Given the
current agent state, which is composed of its current beliefs, agents may have different
goals. A goal is associated with a state of affairs that an agent would like to achieve. We
will now analyse goals generated by agents according to certain beliefs.

If an agent believes that overUsage(link), there are two goals to be achieved.
Firstly, although the agent is not sure whether an attack is indeed occurring, it needs
to prevent a possible attack, i.e., it generates a goal attackPrevented(link). Secondly,
because the agent does not know if overUsage(link) is due to regular users, it needs to
find this out, by generating a goal ?regularUsage(link). “?” indicates that the target state
of affairs should either contain regularUsage(link) or ¬regularUsage(link). These
two generated goals are shown below.

belief(overUsage(link)) −→
goal(attackPrevented(link)) ∧ goal(?regularUsage(link))

(4)

Another situation that may occur is that an agent, somehow, may have de-
tected that one of the IP addresses that use a link has an anomalous behaviour, i.e.

AutoSoft

29



anomalous(ip). Similarly to the generated goals above, the agent must restrict the access
of anomalous IPs to the link and find out whether this anomalous behaviour is benign or
malicious, and therefore two goals are generated: restricted(ip) and ?benign(ip).

belief(anomalous(ip)) −→ goal(restricted(ip)) ∧ goal(?benign(ip)) (5)

An agent may also become aware that a certain IP flow is likely to be associated
with an attack, that is, it is a threat to the network — threat(flow). When this happens,
the agent should respond to the threat, by generating a goal threatResponded(flow).

belief(threat(flow)) −→ goal(threatResponded(flow)) (6)

Finally, ideally, links should always be fully operational and accessible from any-
where (i.e. by any IP address). Therefore, if a link is not fully operational, agents have a
goal to make them fully operational, or if an IP address is restricted, agents have a goal to
make them unrestricted. This is shown in Equations 7 and 8, which generate these goals.
Note these goals are generated solely when it is safe to do so.

belief(¬fullyOperational(link)) ∧ belief(regularUsage(link)) −→
goal(fullyOperational(link))

(7)

belief(restricted(ip)) ∧ belief(¬anomalous(ip)) −→ goal(¬restricted(ip)) (8)

Given these goal generation rules, agents may have many goals to achieve. How-
ever, according to the current context, agents may be committed to achieve only some
of the goals, for instance those with higher priority, to later achieve others. This is
performed in the goal deliberation step. In our scenario, agents should prevent an at-
tack, before learning about a certain information. Therefore goals that will lead to (pal-
liative) actions to prevent and respond to attacks have the highest priority, which are:
attackPrevented(link), restricted(ip), threatResponded(flow). Goals that restore
full operation, fullyOperational(link) and ¬restricted(ip), also have higher priority
than the informational goals ?regularUsage(link) and ?benign(ip).

3.1.3. Plan Selection

We showed how agents reason about what should be done, without concerning with how
it should be done. Now, we will focus on the latter, by detailing the plans to achieve goals.
All plans, which are shown in Table 1 and will be described next, are used to achieve the
presented goals and consequently to respond to a DDoS attack. Each plan has a name
(with an acronym that will be used later to refer to it), a goal that it can achieve, the
context that state the conditions in which the plan is applicable, and a set of actions that
are executed to achieve the goal associated with the plan.

In order to describe plans, we will consider an initial scenario in which a specific
flow is attacking a server in a network, and there is a single network switch (i.e., an agent)
that provides access to this server through a single link. Consequently, after perceiving
events, the agent believes that overUsage(link) and ∼ regularUsage(link), and conse-
quently has the goals attackPrevented(link) and ?regularUsage(link). So, the agent

AutoSoft

30



Table 1. Plans for responding to a DDoS attack.
Plan: LimitLinkRate (LLR) Plan: AnalyseLinkStatistics (ALS)
Goal: attackPrevented(link) Goal: ?regularUsage(link)
Context: overUsage(link) Context: -
Actions: Actions:
limit(link, rate) // Analyse link and detect outliers
belief(¬fullyOperational(link)) ∀ip.(outlier(ip)) −→ belief(anomalous(ip)) ∧ belief(∼ benign(ip))
belief(attackPrevented(link)) ∃ip.(anomalous(ip)) −→ belief(¬regularUsage(link))

@ip.(anomalous(ip)) −→ belief(regularUsage(link))
Plan: RestoreLinkRate (RLR) Plan: LimitIPRate (LIPR)
Goal: fullyOperational(link) Goal: restricted(ip)
Context: regularUsage(link) Context: anomalous(ip)
Actions: Actions:
unlimit(link) limit(ip, rate)
belief(fullyOperational(link)) belief(ipRateLimited(ip))
belief(∼ attackPrevented(link)) belief(restricted(ip))

@ip′.(anomalous(ip′) ∧ ¬restricted(ip′)) −→ regularUsage(link)
Plan: RecordFlow (RF) Plan: AnalyseIPFlows (AIPF)
Goal: flowRecord(ip) Goal: ?benign(ip)
Context: - Context: anomalous(ip)
Actions: Actions:
recordFlow(ip) goal(?flowRecord(ip))
belief(flowRecord(ip)) // Classify flow record using machine learning

∀flow.(malicious(flow)) −→ belief(threat(flow))
∃flow.(threat(flow) ∧ srcIP (flow) = ip) −→ belief(¬benign(ip))
@flow.(threat(flow) ∧ srcIP (flow) = ip) −→ belief(benign(ip))

Plan: RestoreIPRate (RIPR) Plan: LimitFlowRate (LFR)
Goal: ¬restricted(ip) Goal: threatResponded(flow)
Context: benign(ip)∧ Context: threat(flow)

ipRateLimited(ip) Actions:
Actions: limit(flow, rate)
permit(ip) belief(flowRateLimited(flow))
belief(¬ipRateLimited(ip)) belief(threatResponded(flow))
belief(¬restricted(ip)) belief(∼ threat(flow))
belief(∼ anomalous(ip)) @f.(threat(f) ∧ srcIP (flow) = srcIP (f)) −→ belief(benign(ip))

executes first the LLR plan to achieve attackPrevented(link), causing the link to be par-
tially operational (¬fullyOperational(link)). Then, the ALS plan is executed to achieve
?regularUsage(link) and performs statistical analysis of the link usage, concluding that
there is an IP address with an anomalous behaviour (anomalous(ip)), which may be be-
nign or malicious (∼ benign(ip)). Because now the agent believes that anomalous(ip),
it also believes ¬regularUsage(link). Given that the agent knows that there is an IP
address with anomalous behaviour, it generates goals to restrict it (restricted(ip)) and
to know whether it is benign (?benign(ip)). So the LIPR plan is executed to achieve
the former, and the AIPF to achieve the latter. Restricting the only IP address that is
anomalous causes the agent to believe that regularUsage(link) and, as a consequence, it
generates the goal of becoming fully operational again. As this goal has a higher priority
than that of the ?benign(ip) goal, the RLR plan is executed, restoring the link rate. To
achieve ?benign(ip), the AIPF is executed. This plan uses a flow record, which is a belief
that the agent does not currently have. So the AIPF plan adds a new goal to the agent,
which executes the RF plan to obtain this information. Then, the AIPF plan continues its
execution, by using a machine learning algorithm to classify flows (e.g., K-means, Naı̈ve
Bayes, SVM), and concludes that a particular flow is a threat (threat(flow)), and thus the
IP address is malicious (¬benign(ip)). Because there is a threat, the agent must achieve
the goal threatResponded(flow), and executes the LFR plan to do so. As the malicious
flow is now limited, the IP address is considered benign and can be unrestricted. The
agent generates the goal ¬restricted(ip), and executes the RIPR plan to achieve it. In the

AutoSoft

31



Table 2. Example of belief base updates given a DDoS attack.
Belief Start LLR ALS LIPR RLR AIPF(1) RF AIPF(2) LFR RIPR
overUsage(link) p p ¬1 ¬ ¬ ¬ ¬ ¬ ¬ ¬
regularUsage(link) ∼ ∼ ¬ p p p p p p p
fullyOperational(link) ¬ ¬ ¬ p p p p p p
attackPrevented(link) p p p ∼ ∼ ∼ ∼ ∼ p
anomalous(ip) p p p p p p p ∼
restricted(ip) p p p p p p ¬
ipRateLimited(ip) p p p p p p ¬
benign(ip) ∼ ∼ ∼ ∼ ∼ ¬ p p
flowRecord(ip) p p p p
threat(flow) p ∼ ∼
flowRateLimited(flow) p p
threatResponded(flow) p p
1Updated due to belief revision.

end, the agent is fully operational and the malicious flow is limited.

This evolution of agent beliefs over time due to the execution of plans is sum-
marised in Table 2. As mentioned before, we assume that the agent has as initial beliefs
the knowledge that the link is being overused, and does not know whether this is due to
regular users. Then, each column represents the current agent beliefs after the execution
of the plan that is indicated in the column title: (i) p: belief is true; (ii) ¬: belief is false;
and (iii) ∼: it is unknown whether the belief is true. Grey cells indicate belief changes.

Two further observations can be made with respect to these plans. First, plans
are independent from each other, and there is no action that invokes any of the plans.
Current agent beliefs and goals are the factors that lead to plan execution. Therefore,
Table 2 shows just an example of a sequence in which plans are executed. Second, there
are beliefs — ipRateLimited(ip) and flowRateLimited(flow) — that are currently not
explicitly used in our proposed design. They are used to distinguish the intervention made
(such as limiting an IP address) from an ultimate goal (such as restricting an IP address).
There may be different possible interventions (i.e. plans) to achieve a certain ultimate
goal and, if we provided these alternative plans, agents may choose the best according to
a certain scenario, or use them in case a plan fails.

3.2. Multi-agent Architecture

In previous sections, we showed components that are used to compose a BDI agent, and
illustrated a scenario in which we have a single agent with all these presented components.
Although this single agent provides the whole solution to respond to DDoS attacks, due
to hardware restrictions, it is more adequate to distribute responsibilities among different
network devices. For example, running traffic classification algorithms requires signifi-
cant RAM memory and a powerful processor, and it is thus convenient to have a dedicated
machine to perform this task.

We will consider a network configuration that is composed of the following de-
vices: (i) application servers: responsible for running applications; (ii) IP load balancers:
responsible for distributing user requests among different replicated application servers;
(iii) routers: responsible for forwarding network packets to their proper destination; (iv)
firewall: responsible for blocking or not the flow of network traffic; and (v) classifiers:
responsible for analysing flows and classifying them as malicious or benign. As can be
seen in Table 1, there are some plans that involve some primitive actions, such as limiting

AutoSoft

32



Figure 2. Configuration of network devices with Initial beliefs and plans.

traffic. Therefore, these plans must be added only to agents (i.e., network devices) that
are able to perform such actions. We show an example of network topology, together with
the distribution of plans of Table 1 among agents in Figure 2.

As no agent has all plans, they are not able to achieve all goals. Agents must, thus,
collaborate to respond to attacks. Due to space restrictions, we limit ourselves to a broad
description of how agents collaborate to do so. When an agent is unable to achieve a goal
(i.e., it has no plan to achieve it), it will request other agents of the network to achieve
them. Other agents reply to this request by answering whether they can achieve the re-
quested goal and an associated cost. This cost can be associated with the current agent
availability in terms memory or processor, or physical location, when a significant amount
of data will be exchanged between agents. Such costs allow the agent that made the re-
quest to decide to which agent it will delegate the goal. This process can be performed
using the FIPA Contract Net Interaction Protocol1, for example.

4. Discussion
This paper proposes reengineering an existing solution that addresses DDoS attacks.
Therefore, our agent-based design is expected to achieve similar performance than the
original solution in standard scenarios. As said in the introduction, our main goal with
this new design is to investigate, in the form of an exploratory study, the use of a BDI
architecture to provide network resilience, and its impact in the design. We thus in this
section provide a qualitative discussion of major issues that were identified.

1http://www.fipa.org/specs/fipa00029/

AutoSoft

33



Table 3. Comparison of adopted terms.
BDI Agent-based approach SMC-based approach

External Event Event
Goal

Plan Context Condition
Plan Action

Organisation Management Pattern
Roles Roles

Interaction Protocols Interface

Table 4. Strengths (+) and weaknesses (-) of each approach.
BDI Agent-based Approach SMC-based Approach
(-) It is harder to understand its behaviour, because
there are different factors that influence it (current
beliefs, generated goals, etc.).

(+) It has a more predictable behaviour, because it
is easier to analyse the chain of events generated
by each ECA policy, thus facilitating testing.

(+) It has a flexible behaviour, because of the dif-
ferent factors that influence agent behaviour, thus
allowing agents to handle situations unpredicted
at design time.

(-) It is able to handle only situations predicted at
design time.

(+) As it captures motivational state, an agent may
try different plans until it achieves a goal.

(-) It does not capture motivational state, therefore
trying different alternatives to solve an issue must
be implemented manually.

(+) It isolates concerns: (i) informational state and
how it is updated based on perceived events; (ii)
motivational state; (iii) actions to achieve goals.

(-) All these concerns are tangled in ECA policies.

(+) Plugging a new device in the network does not
require human intervention to make it collaborate
with other devices.

(-) When a new device is added to the network, an
expert should manually re-assign roles to devices.

Terminology. Both the pattern-based approach used as reference in this work and the
BDI architecture consider autonomous software components as building blocks. Never-
theless, such software components (SMCs and BDI agents) are structured with different
finer-grained components. With respect to this, we identified several similarities among
these components, as detailed in Table 3. As can be seen, most of the concepts exist in
both approaches. The key difference is the goal concept, which specifies a motivational
state. This makes SMCs reactive, while agents are pro-active. Some agent concepts —
organisation, roles, and interaction protocols — are not explored in this paper, but there
are agent approaches that address agent organisations [Zambonelli et al. 2001].

Strengths and Weaknesses. Although many concepts used in the BDI architecture can
be mapped to those in the SMC-based approach, the BDI reasoning cycle and the use of
the goal abstraction make the two designs significantly different. We identified strengths
(+) and weaknesses (-) of each of these approaches, which are summarised in Table 4.

One of the weaknesses of using the BDI-based approach is the difficulty in testing
the system (in fact, this is a challenge of multi-agent system development), because agent
behaviour depends on many different factors and it is hard to perform a limited number of
tests to guarantee that the network will behave adequately in all scenarios. However, be-
cause of the adoption of a logic-based language, it is possible to prove desired properties.
This is left out of the scope of this paper.

AutoSoft

34



Open Issues. Based on an existing pattern for responding to a possible DDoS attack,
we proposed a design solution based on BDI agents. Although it provided a flexible im-
plementation of the proposed pattern, there are many issues left unaddressed. Firstly, as
discussed above, guaranteeing safety is not trivial, because testing all possible scenarios
is unfeasible. Secondly, the proposed solution should consider that malicious users may
learn how threats are contained, thus exploiting the resilience strategy for their own bene-
fit. The proposed solution must be robust enough to prevent this. Finally, there should be
further investigation on how different resilience mechanisms would interact using a BDI
agent approach. For example, if an agent concluded that there is a benign peak of network
usage (e.g., as in a flash crowd), actions to handle this should also be implemented.

5. Related Work
Several approaches use autonomous software components to provide network resilience.
However, agent-based designs [Nguengang et al. 2006] only decompose a proposed so-
lution into software components, each with a specified goal. Thus, they typically do not
employ any particular technique proposed in the context of autonomous agents and multi-
agent systems.

Furthermore, a sentient object [Gregory et al. 2002] resembles an SMC in that
both are intended to model a set of interacting hardware and software components,
and provide an infrastructure to support large-scale distributed and networked sys-
tems composed of autonomous components. However, sentient objects rely on static
rules, so they are less flexible than SMCs. Also, sentient objects follow a struc-
ture that cannot be dynamically assembled using more general patterns of interac-
tion [Schaeffer-Filho et al. 2012]. Netlets [Martin et al. 2011] and autonomic functional
blocks (AFBs) [Sifalakis et al. 2011] have been proposed with the aim of supporting new
architectures for the Future Internet. Both are inspired by component-based software de-
velopment approaches. They promote the composition of network protocols by using
building blocks during design-time. Components are collected within a design repository
for further reuse. However, both Netlets and AFBs components are aimed at the specifi-
cation of network stack protocol functionality and do not cater for the general federation
and coordination of autonomous components operating in the network.

6. Conclusion
In this paper, we presented the first step towards an agent-based approach for network
resilience. It exploits the synergy between the network resilience and multi-agent system
research areas. Our approach involves the reengineering of a previously proposed pattern
using Self-Mananged Cells (SMCs) to address distributed denial-of-service attacks using
agents following a BDI architecture and a logic-based language. The proposed design
not only specifies agent beliefs, goals, and plans, but also how beliefs are updated based
on perceived external events and how goals are generated. We showed how these BDI
agent components are used to instantiate agents (or network devices) in a network, so
that such agents can collaborate to respond to attacks. Based on our design, we discussed
lessons learned from it. Although there are many similar concepts between SMCs and
BDI agents, BDI agents have a motivational state, which makes them pro-active (while
SMCs are reactive). Moreover, BDI agents are able to reason about what should be done,
not only about how it should be done. These, and other discussed factors, make agent

AutoSoft

35



behaviour more flexible. This work has left many issues unaddressed, such as proving
safety properties of our solution, which will be addressed in future work.

References
Gregory, A. F., Biegel, G., Clarke, S., and Cahill, V. (2002). Towards a sentient object model. In In

Workshop on Engineering Context-Aware Object Oriented Systems and Environments (ECOOSE’2002).

IBM (2005). An architectural blueprint for autonomic computing. third edition. Technical report, IBM.

Jennings, N. R. (2001). An agent-based approach for building complex software systems. Commun. ACM,
44(4):35–41.

Lupu, E., Dulay, N., Sloman, M., Sventek, J., Heeps, S., Strowes, S., Twidle, K., Keoh, S.-L., and Schaeffer-
Filho, A. (2008). AMUSE: autonomic management of ubiquitous systems for e-health. Concurrency
and Computation: Practice and Experience, John Wiley, 20(3):277–295.

Martin, D., Volker, L., and Zitterbart, M. (2011). A flexible framework for future internet design, assess-
ment, and operation. Computer Networks, 55(4):910–918.

Nguengang, G., Hugues, L., and Gaiti, D. (2006). A multi agent system approach for self resource reg-
ulation in ip networks. In Proceedings of the First IFIP TC6 International Conference on Autonomic
Networking, AN’06, pages 64–75. Springer-Verlag.

Nguyen, T. and Armitage, G. (2008). A Survey of Techniques for Internet Traffic Classification using
Machine Learning. IEEE Communications Surveys & Tutorials, 10(4):56–76.

Rao, A. S. (1996). Agentspeak(l): Bdi agents speak out in a logical computable language. In Proceedings of
the 7th European Workshop on Modelling Autonomous Agents in a Multi-agent World : Agents Breaking
Away: Agents Breaking Away, MAAMAW ’96, pages 42–55. Springer-Verlag.

Rao, A. S. and Georgeff, M. P. (1995). BDI-agents: from theory to practice. In Proceedings of the First
Intl. Conference on Multiagent Systems, San Francisco.

Schaeffer-Filho, A., Lupu, E., and Sloman, M. (2014). Federating policy-driven autonomous systems: Inter-
action specification and management patterns (in press). Journal of Network and Systems Management.
DOI: 10.1007/s10922-014-9317-5.

Schaeffer-Filho, A., Smith, P., Mauthe, A., Hutchison, D., Yu, Y., and Fry, M. (2012). A framework for
the design and evaluation of network resilience management. In Proceedings of the 13th IEEE/IFIP
Network Operations and Management Symposium (NOMS 2012), pages 401–408, Maui, Hawaii, USA.
IEEE Computer Society.

Sifalakis, M., Louca, A., Bouabene, G., Fry, M., Mauthe, A., and Hutchison, D. (2011). Functional com-
position in future networks. Computer Networks, 55(4):987–998.

Sloman, M. and Lupu, E. (2002). Security and management policy specification. IEEE Network, 16(2):10–
19.

Smith, P., Hutchison, D., Sterbenz, J., Schöller, M., Fessi, A., Karaliopoulos, M., Lac, C., and Plattner, B.
(2011). Network resilience: a systematic approach. Communications Magazine, IEEE, 49(7):88–97.

Sterbenz, J. P. G., Hutchison, D., Çetinkaya, E. K., Jabbar, A., Rohrer, J. P., Schöller, M., and Smith,
P. (2010). Resilience and survivability in communication networks: Strategies, principles, and survey
of disciplines. Computer Networks: Special Issue on Resilient and Survivable Networks (COMNET),
54(8):1245–1265.

Zambonelli, F., Jennings, N. R., and Wooldridge, M. (2001). Organizational abstractions for the analy-
sis and design of multi-agent system. In First International Workshop, AOSE 2000 on Agent-oriented
Software Engineering, pages 235–251. Springer-Verlag.

AutoSoft

36


