
On the Development of Multi-agent Systems
Product Lines: A Domain Engineering Process

Ingrid Nunes1, Carlos J.P. de Lucena1, Uirá Kulesza2, and Camila Nunes1

1 PUC-Rio, Computer Science Department, LES - Rio de Janeiro, Brazil
{ioliveira,lucena,cnunes}@inf.puc-rio.br

2 Federal University of Rio Grande do Norte (UFRN) - Natal, Brazil
uira@dimap.ufrn.br

Abstract. Multi-agent System Product Lines (MAS-PLs) are the in-
tegration of two promising technologies: Multi-agent Systems (MASs),
which provides a powerful abstraction to model features with autonomous
and pro-active behavior, and Software Product Lines (SPLs), whose aim
is to reduce both time-to-market and costs in the development of system
families by the exploitation of commonalities among family members.
This paper presents a domain engineering process for developing MAS-
PLs. It defines activities and work products, whose purposes include
allowing agent variability and providing agent features traceability, both
not addressed by current SPL and MAS approaches.

Key words: Multi-agent Systems, Software Product Lines, Domain En-
gineering, Software Process

1 Introduction

Complex modern software systems tend to be situated, open, autonomous and
highly interactive [1]. Agent-oriented Software Engineering (AOSE) has emerged
as new paradigm that addresses the development of complex and distributed
systems based on their decomposition into autonomous and pro-active agents,
which together compose a Multi-agent System (MAS). However, MAS method-
ologies have not addressed so far the need of developing large scale customized
systems and little effort has been done to take advantage of software reuse tech-
niques. Software Product Lines (SPLs) manage to promote reduced time-to-
market, lower development costs and higher quality to the development of appli-
cations that share common and variable features. Based on the exploitation of
application commonalities and large-scale reuse, these applications are derived
in a systematic way and are customized to specific user needs. In order to fulfil
the increasing demand of large-scale and customized MASs, Multi-agent Sys-
tem Product Lines (MAS-PLs) have emerged to integrate these two promising
trends of software engineering. The main goal of MAS-PLs is to incorporate their
respective benefits and to help the industrial exploitation of agent technology.

In this context, this paper presents a domain engineering process for de-
veloping MAS-PLs. The two main issues in the MAS-PL development that we



aim at addressing and have not been addressed by current approaches are: (i)
documenting agent variability – explicit variability documentation is essential
in SPLs [2]. Nevertheless, SPL approaches do not cover variability documen-
tation in agent models; they focus on specific models, e.g. object-oriented and
component-oriented; and (ii) tracing agent features – feature traceability allows
to specify the configuration knowledge between problem and solution space thus
enabling the selection of appropriate artifacts of a SPL in the product derivation
process. In defining our process we introduce new and modified models as well
as leverage some activities and notations that consist of parts of methods of
existing SPL and MAS approaches [3–5].

Besides providing customized applications derived in a systematic way, the
scenario we are currently exploring is the incorporation of autonomous and pro-
active behavior to existing web systems. This is becoming common practice for
several web-based systems, for instance recommending products in online stores
and displaying personalized ads in search engines according to previous searches.
As a consequence, we aim at explicitly separating agent and non-agent features,
mainly due to two reasons: (i) agent abstraction provides some particular charac-
teristics, such as autonomy and pro-activeness. Features that do not require them
can be modeled and implemented using other technologies (e.g. object-oriented)
taking benefit from frameworks and approaches already proposed; and (ii) we
aim at supporting the evolution of existing applications and SPLs that have
been developed using other existing technologies by the incorporation of agent
features. Given that we are adopting a feature-oriented development approach,
features are modeled independently of each other. Therefore, it is possible to
modeling agent and non-agent features in different ways.

The paper is structured as follows. Related work is presented in Section 2.
Section 3 presents the proposed domain engineering process, first giving an
overview of it, and later detailing each of its phases. Section 4 concludes this
paper and points out directions for future work.

2 Existing MAS-PL Approaches

Several approaches have been published to address problems and challenges of
both SPL and MAS engineering [3–6]. Even though many MAS methodologies
have been proposed, most of them do not take into account the adoption of
extensive reuse practices that can bring an increased productivity and quality
to the software development. They do not consider variability on agent models
and do not take into account feature modularization and traceability. Despite
the fact that SPL approaches provide useful notations to model agent features,
none of them completely covers all their properties and concepts [7]. They do
not provide models to design agent concepts and map them to features.

Only few attempts have explored the integration synergy of MASs and SPLs.
Pena et al. [8] propose an approach based on MaCMAS methodology, which con-
sists of using goal-oriented requirement documents, role models, and traceability
diagrams in order to build a first model of the system. A principle of SPLs is



to design and implement features as modularized as possible in order to allow
an effective application engineering. However, their approach proposes that vari-
abilities are analyzed after modeling the MAS, and this can lead to undesired
situations, such as, the high coupling between mandatory and optional features
and inadequate modularization of agent features.

Dehlinger & Lutz [9] have proposed an extensible agent-oriented requirements
specification template for distributed systems that supports safe reuse. Their
proposal adopts a SPL approach to promote reuse in MASs, which was developed
using the Gaia methodology. Although this approach provides a template to
capture agent variability, it covers only the requirements engineering phase, and
therefore it does not offer a complete solution to address the modeling of agent
features in the domain design and implementation.

3 A Domain Engineering Process for MAS-PL

Domain engineering is the process of SPL engineering in which SPL common-
alities and variabilities are identified, defined and realized. This section first
introduces our process and describes its key characteristics (Section 3.1). Later,
it presents and analyzes approaches that led to some activities and notations
incorporated to our process. (Section 3.2). Finally, it details each phase of our
domain engineering process (Sections 3.3, 3.4 and 3.5).

We illustrate our process phases with our ExpertCommittee (EC) case study
[10]. It is a MAS-PL of conference management systems, whose aim is to man-
age paper submission and reviewing processes from conferences. The multi-agent
version of this kind of system was first proposed in [11] and since has been widely
used to the elaboration and application of MAS methodologies. We assume the
readers of this paper are mostly knowledgeable about the domain, but a com-
plete description about this case study can be seen in [10]. In addition to the
traditional functionalities provided by conference management systems, we have
incorporated features to the EC, whose goal is automating tasks previously exe-
cuted by users and each of them can be or not included in a specific conference
management application. Examples are the automatic suggestion of conferences
to authors and automatic assignment of papers to committee members.

Due to space restrictions, we focus on describing activities purposes and
their main output work products, suppressing some details such as tasks of each
activity and roles. Additional details and artifacts produced for the EC case
study can be found in [12].

3.1 Process Overview

Our process is structured according to the SPEM [13], which provides a common
syntax and modeling structure to construct software process models. It is based
on three main levels: (i) phases – significant periods in a process; (ii) activities –
general units of work; and (iii) tasks – define work being performed by roles and
are associated with input and output work products. Figure 1 summarizes our



process. Following typical domain engineering processes, our approach encom-
passes three phases: Domain Analysis, Domain Design and Domain Realization.
The qualifier “domain” emphasizes the multisystem scope of these phases.

Our process aggregates activities and notations that are specific to model
agents and their variabilities to address MAS-PLs. Notations and guidelines
that have been adopted alongside all our process are: (i) use of �kernel�,
�optional� and �alternative� stereotypes to indicate variability in different
model elements (e.g. use cases, classes and agents) of several models; (ii) sepa-
rated modeling of features, to stress the fact that diagrams are split accordingly;
(iii) specific models to provide features traceability along all the process. Most
activities have a specific task for generating the traceability model; and (iv) use
of colors to structure models in terms of features. A different color is attributed
for each feature and this color is used in all model elements related to the fea-
ture. This is a redundant information used to provide a better visualization of
features traceability, even though it is already provided by dependencies models.

3.2 Method Fragments Incorporated to our Process

Even though SPL and MAS approaches present deficiencies to develop MAS-
PLs, they provide useful notations and activities that can be integrated to model
MAS-PLs. Consequently, instead of proposing an approach from scratch, we have
incorporated fragments of existing approaches into our process.

The PLUS method provides a set of concepts and techniques to extend UML-
based design methods and processes for single systems to handle SPLs. Basically
the reasons for adopting PLUS are [7]: (i) PLUS explicitly models the common-
ality and variability in a SPL, mainly through the use of UML stereotypes; (ii)
it uses feature modeling to address variability in the domain analysis, as it is
commonly done in SPL approaches. On the other hand, other SPL approaches
have the following drawbacks: they either focus mainly on management aspects
of SPLs [6], also lack design details, or just provide high level guidelines [14].

In order to model agent features at the Domain Analysis phase, we have
adopted some phases of PASSI [4], an agent-oriented methodology. It specifies
models with their respective phases for developing MASs, covering all the devel-
opment process. PASSI integrates concepts from object-oriented software engi-
neering and artificial intelligence, and it follows the guideline of using standards
whenever possible. This justifies the use of UML as modeling language. One of
the key reasons for choosing PASSI is that the use of an UML-based notation
enables the merging of complementary notations proposed in PLUS and PASSI,
while establishing a standard for modeling agent and non-agent features.

Instead of using UML for modeling agents in the Domain Design phase,
as PASSI proposes, we use an extended version of it, the MAS-ML modeling
language [5, 15]. Our focus is to allow the design of agents that follow the belief-
desire-intention (BDI) [16] model, whose advantages include: it is relatively ma-
ture, and has been successfully used in large scale systems; it is supported by
several agent platforms, e.g. Jadex, Jason, JACK and 3APL; and it is based



F
ig

.1
.

T
he

D
om

ai
n

E
ng

in
ee

ri
ng

P
ro

ce
ss

.



on solid philosophical foundations. As discussed in [15], some important agent-
oriented concepts, such as environment, cannot be modeled with UML and the
use of stereotypes is not enough because objects and agent elements have differ-
ent properties and different relationships. As a consequence, other MAS mod-
eling languages do not allow the modeling of some agent concepts. MAS-ML
extends the UML meta-model in order to express specific agent properties and
relationships. Using its meta-model and diagrams, it is possible to represent the
elements associated with a MAS and to describe the static relationships and
interactions between these elements.

In summary, we have (i) adopted PLUS notations along all the process; (ii)
incorporated three PASSI phases as activities in the Domain Analysis phase;
and (iii) used MAS-ML to model agent concepts in the Domain Design phase.
In addition, we have proposed (iv) some adaptations to PASSI phases and MAS-
ML in order to allow agent variability and agent features traceability; and (v)
defined new activities and models to address MAS-PL particularities, as well as
specified the sequence and relation among this activities.

3.3 Domain Analysis

The Domain Analysis phase defines activities for eliciting and documenting the
common and variable requirements of a SPL. This phase comprises two sub-
phases: Operational Requirements and Autonomous Requirements.

In the Operational Requirements sub-phase, the systems family is analyzed
and its common and variable features are identified therefore defining the SPL
scope. A feature is a system property that is relevant to some stakeholder and is
used to capture commonalities or discriminate among products in a SPL. In se-
quel, requirements are described in terms of use case diagrams and descriptions.
The first activity is the Requirements Elicitation, which captures requirements
in documents based on interactions with domain specialists and stakeholders.
The next activity is the Feature Modeling, which was originally proposed by the
FODA [14] method and is the activity of modeling the common and variable
properties of concepts and their interdependencies in SPLs. Features are orga-
nized into a tree representation, called features diagram, with a specific notation
for each variability category (mandatory, alternative and optional). EC features
diagram is depicted in Figure 2(a), showing the optional automatic conference
suggestion feature. A feature model refers to a features diagram accompanied by
additional information such as dependencies among features. It represents the
variability within a system family in an abstract and explicit way.

After the Feature Modeling activity, SPL functional features are described
in terms of use cases, in the Use Case Modeling activity. First, use cases are
identified and described, resulting in both a use case diagram and use case
descriptions. Later, the use case diagram should be refined by: (i) refactoring
use cases to provide feature modularization (each use case should correspond
to only one feature). It is accomplished by the use of the generalization and
the extend relationships; and (ii) adding stereotypes to give variability infor-
mation (�kernel�,�optional� and�alternative�). For instance, the Suggest



Conferences is an optional use case and extends the Register Paper use case,
which is part of the SPL kernel. To complete the Operational Requirements,
another use case view is modeled to map use cases to features, resulting in the
Feature/Use Case Dependency model. Use cases are grouped into features with
the UML package notation. These packages are stereotyped with: (i) �common
feature� – represents all mandatory features and groups all kernel use cases; (ii)
�optional feature� – represents optional features and groups use cases related
to a specific optional feature; (iii)�alternative feature� – aggregates alternative
features and groups use cases related to a specific alternative feature. Figure 2(b)
shows the EC Feature/Use Case Dependency model with two optional features:
Automatic Distribution and Conference Suggestion.

The purpose of the Autonomous Requirements sub-phase is to understand
better the domain, by modeling autonomy and pro-active concerns with respect
to the current problem domain. This kind of concerns is distinguished because
they do not need a user that supervises their execution. Furthermore, they are
not well described in use cases, and consequently they need a more precise spec-
ification. Agents are an abstraction of the problem space that are a natural
metaphor to model pro-active or autonomous behavior. Therefore, it is identi-
fied and specified in models in terms of agents and roles.

The domain concepts are captured through the Domain Ontology Modeling
activity, in which the MAS-PL domain is modeled through an ontology. The con-
cepts should be modeled taking into account features, by using techniques such
as generalization to modularize features. The ontology is represented by UML
class diagrams, on which classes and their attributes represent concepts and
slots, respectively. Finally, a model represented by a table that maps concepts
to features is created in order to provide feature traceability. This model enables
the selection of the appropriate concepts during the application engineering. In
parallel to this activity, features that present pro-active or autonomous behavior
(agent features) are identified and specified in models in terms of agents and
roles. The Agent Features Identification activity is responsible for such identi-
fication. So, a new stereotype (�agent feature�) is added to the packages of
the Feature/Use Case Dependency model to indicate which features are agent
features. In Figure 2(b), both optional features are classified as agent features.
In order to specify the identified agent features, our process incorporates some
activities that correspond to some phases of the System Requirements model of
PASSI methodology [17]. Next, we briefly describe PASSI phases used in our
process and our proposed extensions to them.

- Agent Identification: use cases are attributed to agents (represented as
stereotyped UML packages). Use case stereotypes used in the Use Case diagram
are still present. Our extensions: only pro-active or autonomous use cases are
distributed among agents, while PASSI proposes the realization of all use cases
performed by agents; adoption of stereotypes (kernel, alternative or optional);
and use of colors to trace features.

- Role Identification: agent interactions are explored and expressed through
sequence diagrams to identify agent roles. Our extensions: diagrams split accord-



ing to features; use of UML 2.0 frames for representing crosscutting features; use
of colors to trace features; and Feature/Agents Dependency model.

- Task Specification: activity diagrams are used to specify the capabilities
of each agent. Our extensions: one diagram per agent and feature; use of UML
2.0 structured activities for representing crosscutting features (Figure 2(c)) and
use of colors to trace features.

Most of these adaptations are meant to provide variability information in
models. Some proposed notations aims at modularizing crosscutting features,
which are characterized by having impact in several other features. So, instead
of creating new models for them, notations indicate the behavior introduced by
this kind of feature. An additional model (Feature/Agents Dependency model)
provides support to trace from features to agents (and vice-versa). This model
is organized into a tree, whose root represents the SPL, which has children
corresponding to agent features. Each feature has agents as its children indicating
that these elements must be present in the product being derived if the feature is
selected. Agents have roles as children, meaning that the agent plays that roles
for a certain feature. Agents and roles may appear more than once in the model,
meaning that they will be present in a product if at least one agent feature that
depends on them is selected.

3.4 Domain Design

The main purpose of the Domain Design phase is to define an architecture that
addresses both common and variable features of a SPL. Based on analysis mod-
els, designers must model the SPL architecture, determining how these models,
including the variability, are implemented in this architecture. Features modu-
larization must be taken into account during the design of core assets to allow
the (un)plugging of optional and alternative features. In addition, there must be
a model to map features to design elements providing traceability information.

The Domain Design phase has mainly two parts. First, the SPL architecture
is defined and technologies (e.g. frameworks, libraries and agent platforms) that
will be used are selected. The SPL architecture is specified in an UML package
diagram and defined by its decomposition into subsystems and their compo-
nents. This helps to reduce the complexity and to allow several design teams to
work independently. Choosing appropriate technologies for designing and imple-
menting a SPL is a very important step of its development, because they have
an impact on how features are modularized.

On the second part, each feature is statically and dynamically designed in
three different activities: Components Modeling, Agents Modeling and Agent
Society Modeling. The first activity concerns the design of non-agent features.
This design step is basically provided by the PLUS approach.

Agent features are modeled in two activities of our process. They are per-
formed in parallel and may contribute with each other. In the Agents Modeling
activity, agents with their beliefs, goals and plans are modeled; and in the Agent
Society Modeling activity, roles and organizations are modeled. As mentioned
in Section 3.2, we use MAS-ML to model agents. Its structural diagrams are



(a
)

F
ea

tu
re

s
D

ia
g
ra

m
(b

)
F

ea
tu

re
/
U

se
C

a
se

D
ep

en
d
en

cy
m

o
d
el

(c
)

T
a
sk

S
p

ec
ifi

ca
ti

o
n

D
ia

g
ra

m

(d
)

R
o
le

D
ia

g
ra

m
(e

)
F

ea
tu

re
/
A

g
en

t
D

ep
en

d
en

cy
(f

)
D

es
ig

n
/
Im

p
le

m
en

ta
ti

o
n

E
le

-
m

en
ts

M
a
p

F
ig

.2
.

E
C

W
or

k
P

ro
du

ct
s

(P
ar

ti
al

).



the extended UML class diagram and two new diagrams: organization and role.
MAS-ML extends the UML class diagram to represent the structural relation-
ships among agent concepts. The organization diagram models system organi-
zations and relationships between them and other system elements. Finally, the
role diagram is responsible for modeling relationships between roles defined in
organizations.

To address variability in MAS-ML diagrams, we have adopted four different
adaptations: (i) use of�kernel� ,�optional� and�alternative� stereotypes
to indicate variability; (ii) model elements are colored according to the feature
they are related to, based on the color assigned for each feature; (iii) model each
feature in a different diagram. However, crosscutting features impact in several
features, so their specification is spread in other features’ diagrams. Although
crosscutting features are not modeled in specific diagrams, the use of colors helps
to distinguish different model elements related to them; and (iv) the introduction
of the capability [18] concept to modularize variable parts in agents and roles.
A capability is essentially a set of plans, a fragment of the knowledge base and a
specification of the interface to the capability. Capabilities have been introduced
into some MASs as a software engineering mechanism to support modularity
and reusability. We represent a capability in MAS-ML by the agent or agent
role notation with the �capability� stereotype. An aggregation relationship is
used between capabilities and agents, and capabilities and roles. Figure 2(d)
shows the Assign Papers role diagram, on which the colored elements are capa-
bilities that defines parts of the Chair and CommitteeMember roles and a role
(DeadlineMonitor) that are specific for this feature.

Agents’ dynamic behavior is modeled by means of extended sequence dia-
grams by MAS-ML. The extended version of this diagram represents the inter-
action between agents, organizations and environments. The only differences in
modeling dynamic behavior for single systems and MAS-PLs are: (i) different
features are modeled in different diagrams; and (ii) UML 2.0 frames are used to
indicate a behavior related to a crosscutting feature, as it was done in the Role
Identification activity (Section 3.3).

Besides modeling agents with appropriate feature modularization and vari-
ability notations, the Feature/Agent Dependency model is refined by introducing
new agent concepts that were identified in both activities. Figure 2(e) shows a
partial view of the EC Feature/Agent Dependency model.

3.5 Domain Realization

The purpose of the Domain Realization phase is to implement the reusable
software assets, according to the design diagrams. In addition, it incorporates
configuration mechanisms that enable the product instantiation process. Two
activities compose this phase: Agent Implementation Strategy Description and
Assets Implementation.

Implementing software agents is usually accomplished by the use of agent
platforms, such as JADE (the two main provided concepts are agent and be-
haviors) and Jadex (implements the BDI architecture, providing goal, belief and



plan concepts). Consequently, there are different ways of implementing agents.
In addition, the concepts adopted to model them may be different of the ones
provided by the target implementation platform. So, the goal of the Agent Im-
plementation Strategy Description activity is to define a strategy for implement-
ing agents. For instance, mapping agent concepts (agents, beliefs and plans) to
object-oriented concepts (classes, attributes and methods).

In the Assets Implementation activity, designed elements are codified in some
programming language. So, the first task of this activity is to implement SPL
assets. Different implementation techniques can be used to modularize features
in the code, e.g. polymorphism, design patterns, frameworks, conditional com-
pilation and aspect-oriented programming. In [19], we presented a quantitative
study of development and evolution of the EC MAS-PL, consisting of a sys-
tematic comparison between two different versions: (i) one version implemented
with object-oriented techniques and conditional compilation; and (ii) the other
one using aspect-oriented techniques. Additionally, in [20], we have proposed
an architectural pattern to integrate software agents and web applications in a
loosely coupled way.

As stated previously, the target implementation platform may force trans-
forming some design elements into platform specific ones. Hence, it is necessary
to specify how the design elements were implemented in the selected agent plat-
form for traceability purposes. The Design/Implementation Elements Map is
responsible for providing this information. It defines which elements implement
which design elements. Figure 2(f) presents a partial view of this model for the
EC, showing which classes implemented the User agent, for instance.

4 Conclusions and Future Work

In this paper, we have proposed a domain engineering process for developing
MAS-PLs. Using a SPL approach for building MASs allows meeting the need
of producing software with mass customization while taking advantage of agent
abstraction to model modern software systems that tend to be situated, open,
autonomous and highly interactive. Our process was modeled according to SPEM
and includes specific activities and work products to address agent features and
their traceability, and also provide notations for documenting agent variability.
It was also defined based on existing best practices of existing SPL and MAS ap-
proaches: PLUS provides notations for documenting variability; PASSI method-
ology diagrams are used to specify agent features in the Domain Analysis phase;
and MAS-ML is the modeling language used in the Domain Design phase. A
new contribution of our approach resides in the fact that we completely separate
the modeling of agent features. Therefore, it makes it possible to evolve existing
systems developed with different technologies to incorporate new features that
take advantage of agent abstractions. Our process has emerged based on the
experience of development of two web-based MAS-PLs: the ExpertCommittee
(presented in this paper) and the OLIS case study, which is a SPL of web ap-
plications that provide personal services to users. In addition, the process was



used in a graduate Agent-oriented Software Engineering course at PUC-Rio in
order to provide further evaluation of the approach.

We are currently developing other case studies to evaluate our process. In
addition, we are investigating how model-driven and aspect-oriented approaches
can help to model and implement crosscutting features to provide for a better
modularization. Finally, we aim at extending our process to address other agent
characteristics, such as self-* properties.

References

1. Zambonelli, F., Omicini, A.: Challenges and research directions in agent-oriented
software engineering. JAAMAS 9(3) (2004)

2. Muthig, D., Atkinson, C.: Model-driven product line architectures. In: SPLC 2.
(2002) 110–129

3. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Addison Wesley (2004)

4. Cossentino, M.: IV. In: From Requirements to Code with the PASSI Methodology.
Idea Group Inc. (2005)

5. da Silva, V.T., de Lucena, C.J.P.: From a conceptual framework for agents and
objects to a multi-agent system modeling language. JAAMAS 9(1-2) (2004)

6. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley (2002)

7. Nunes, I., Nunes, C., Kulesza, U., Lucena, C.: Documenting and modeling multi-
agent systems product lines. In: SEKE 2008. (2008) 745–751

8. Pena, J., Hinchey, M.G., Ruiz-Corts, A., Trinidad, P.: Building the core archi-
tecture of a multiagent system product line: with an example from a future nasa
mission. In: AOSE ’06. LNCS. (2006)

9. Dehlinger, J., Lutz, R.R.: A Product-Line Requirements Approach to Safe Reuse
in Multi-Agent Systems. In: SELMAS ’05, ACM Press (2005)

10. Nunes, I. et al.: Developing and evolving a multi-agent system product line: An
exploratory study (to appear). In: AOSE 2008. LNCS. Springer-Verlag (2009)

11. Ciancarini, P. et al.: A case study in coordination: Conference management on the
internet (1998) http:www.cs.unibo.it/cianca/wwwpages/case.ps.gz.

12. Nunes, I.: Towards a multi-agent product line development methodology (2008)
http://www.inf.puc-rio.br/˜ioliveira/maspl/.

13. Object Management Group (OMG): Software & Systems Process Engineering
Metamodel specification (SPEM) Version 2.0 (2008)

14. Kang, K. et al.: Feature-oriented domain analysis (foda) feasibility study. Technical
Report CMU/SEI-90-TR-021, SEI, Carnegie-Mellon University (1990)

15. da Silva, V.T., Choren, R., de Lucena, C.J.P.: MAS-ML: a multiagent system
modelling language. IJAOSE 2(4) (2008) 382–421

16. Rao, A., Georgeff, M.: BDI-agents: from theory to practice. In: ICMAS-95. (1995)
17. Nunes, I., Kulesza, U., Nunes, C., Cirilo, E., Lucena, C.: A domain analysis ap-

proach for multi-agent systems product lines (to appear). In: ICEIS 2009. (2009)
18. Busetta, P., Howden, N., Rönnquist, R., Hodgson, A.: Structuring bdi agents in

functional clusters. In: ATAL ’99. (2000) 277–289
19. Nunes, C. et al.: On the modularity assessment of aspect-oriented multi-agent

systems product lines: a quantitative study. In: SBCARS 2008. (2008) 122–135
20. Nunes, I., Kulesza, U., Nunes, C., Cirilo, E., Lucena, C.: Extending web-based

applications to incorporate autonomous behavior. In: WebMedia 2008. (2008)


