
Technical Excellence
in Software Development

Prof. Ingrid Nunes
Universidade Federal do Rio Grande do Sul (UFRGS)

Série de Seminários do INF + CEI-Talks

Software Development

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 2

Task A Task B Task C

Practices

• Practice X
• Practice Y
• Practice Z

R. L. Glass, "Greece vs. Rome: Two Very Different Software Cultures," in IEEE Software, vol. 23, no. 6,
pp. 112-112, Nov.-Dec. 2006.doi: 10.1109/MS.2006.163

Software Development

• But…

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 3

TOOL

Software Development

• And…

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 4

https://the-stack-overflow-podcast.simplecast.com/episodes/code-base-clean-modern-
roberta-arcoverde

Software Development

• What does not work?

1. To adopt an approach without knowing it or adapt it,
when it is required

2. To adopt an approach ignoring what is key for it to
work

3. To consider something as does with
no guarantees that it has been done
as it should be

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 5

Principles and Best Practices

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 6

class UserController {

createUser() {
// check data valid
new User()

}

resetPassword() {
// check token valid
// check pw valid
user.setPassword(newPW)

}

}

class User {

login
password

//getters

//setters

}

Is there any problem
in this code?

Principles and Best Practices

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 7

class UserController {

createUser() {
// check data valid
new User()

}

resetPassword() {
// check token valid
// check pw valid
user.setPassword(newPW)

}

}

class User {

login
password

//getters

//setters

}

Duplicated code!

High coupling!

Principles and Best Practices

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 8

class UserController {

createUser() {
checkUser()
new User()

}

resetPassword() {
// check token valid
checkUser()
user.setPassword(newPW)

}

}

class User {

login
password

//getters

//setters

}

class UserValidator {
checkUser() { … }

}

Procedural
Paradigm ???

Principles and Best Practices

• Effective use of
object orientation

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 9

class UserController {

createUser() {
new User()

}

resetPassword() {
user.resetPassword(newPW)

}

}

class User {

login
password

User () {
...
setPassword()

}
setPassword() {

//check pw valid
}
resetPassword() {

isTokenValid()
setPassword()

}
isTokenValid() { … }

}

Principles and Best Practices

• Rules and Principles
• Bertrand Meyer. 1988.

Object-Oriented Software
Construction.

• Modularity Rules
• Direct Mapping
• Few Interfaces
• Small interfaces (weak

coupling)
• Explicit Interfaces
• Information Hiding

• Modularity Principles
• Linguistic Modular Units
• Self-Documentation
• Uniform Access
• Open-Closed
• Single Choice

• Principles S.O.L.I.D.
• Robert C. Martin. 2008.

Clean Code: A Handbook of
Agile Software
Craftsmanship.

• Single Responsibility
Principles

• Open-Closed Principle
• Liskov Substitution Principle
• Interface Segregation

Principle
• Dependency Inversion

Principle

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 10

Principles and Best Practices

• GRASP Patterns
• E.g. Specialist
• Craig Larman. 1997. Applying

UML and Patterns: An
Introduction to Object-
Oriented Analysis and
Design and Iterative
Development.

• Code Smells / Refactoring
Catalog
• E.g.

• Feature Envy
• Data Class

• Martin Fowler. 1999.
Refactoring: Improving the
Design of Existing Code.

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 11

Principles and Best Practices

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 12

High
cohesion

Low
coupling

Good
modularity

Principles and Best Practices

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 13

Gouthier and Pont [1970]

CBSoft 2014 – David Parnas

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 14

http://cbsoft2021.joinville.udesc.br/

Software Architecture

• Fundamental for an organised software evolution

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 15

Name 1. Modules
2. Dependencies
3. Module roles

Consistency between the
conceptual and
implemented architecture!

Software Architecture

• Fundamental for an organised software evolution

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 16

View

Data

Business BO Business
Rule

Business
Rule Duplicated

code!

Software Architecture

• Architecture Recovery

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 17

Software Architecture

• WGB Method
• Dependencies

+
MDS Metric

+
Optimisation
Problem

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 18

ZAPALOWSKI, V. ; NUNES, I. ; NUNES, D. . The WGB method to recover implemented architectural
rules. INFORMATION AND SOFTWARE TECHNOLOGY, v. 103, p. 125-137, 2018.

Code Review

• Advantage
• Avoid problem 3: To

consider something as
does with
no guarantees that it
has been done as it
should be

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 19

Code Review

• Some facts (most derived from OSS)
• Average of 1-2 reviewers and 2-3 comments per request
• Newcomers tend to receive more attention
• Small code changes and long descriptions facilitate the review
• Most frequent discussion topics

• Code improvement
• Understanding
• Social interactions

• MCR and pair programming are interchangeable in terms of cost
• When pair programming is adopted within test-driven development,

MCR has lower cost
• Unit testing: finds more failures
• MCR: less time in the detection and isolation of the underlying sources

of the defects
• Most common type of support

• Reviewer recommenders and visualizations of code changes

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 20

DAVILA, N. ; NUNES, I. . A Systematic Literature Review and Taxonomy of Modern Code Review. The
Journal of Systems & Software, 2021.

Technical Debt

• Metaphor created by Ward Cunningham to justify
for non-technical stakeholders the need for
refactoring
• Some problems in the code

are like financial debt. It is
ok to make a loan, as long
as it is paid.

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 21

Technical debt
management is crucial!

It must be paid.

Technical Debt

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 22

Technical Debt

Reasons for TD introduction
at the code level

• From the self perspective
• Tight schedule
• Work overload
• Pressure from the

management

• From the perspective of
other developers
• Also development and

technology inexperience

Practices that should be
adopted to avoid TD

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 23

ROCHA, J. C. ; ZAPALOWSKI, V. ; NUNES, I. . Understanding Technical Debt at the Code Level from
the Perspective of Software Developers. In: Brazilian Symposium on Software Engineering, 2017.

Metrics and Static Analysis Tools

• Code Metrics
• Traditional: LOC, Fan-in, Fan-out, Cyclomatic

Complexity, ...
• CK Metrics: DIT, WMC, RFC, CBO, LCOM, NOC

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 24

Metrics and Static Analysis Tools

• Code Metrics
• Traditional: LOC, Fan-in, Fan-out, Cyclomatic

Complexity, ...
• CK Metrics: DIT, WMC, RFC, CBO, LCOM, NOC

• Static Analysis Tools
• Automatically checking of common problems
• Use of rules

• Dependencies, code smell detections
• Part of automated reviewers

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 25

Metrics and Static Analysis Tools

• Experimental Software Engineering
• GQM

• Framework for systematic measurement,
data collection, and analysis

• GOAL
• Measurement objects can be products,

processes and resources
• QUESTION

• Characterisation of the questions aligned
with the objectives

• METRIC
• Measurements to answer the specified

questions

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 26

V. Basili, R. Selby, and D. Hutchens. 1986. Experimentation in software engineering. IEEE Trans. Softw.
Eng. 12, 7 (July 1986), 733-743.

“You can’t manage what you can’t measure”,
Tom DeMarco

Software Logging and Monitoring

• What is logging?
• It is the practice of recording relevant information

about a running system
• Logging statements

log.debug("writing file to: {}", file);

• Be precise, concise and consistent in logging statements
• Specify (in advance) and follow logging conventions

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 27

VariableLevel

Message

Software Logging and Monitoring

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 28

Software Logging and Monitoring

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 29

• Tigris: a two-phase framework for software tracing

MERTZ, J. ; NUNES, I. . Tigris: a DSL and Framework for Monitoring Software Systems at Runtime. The
Journal of Systems & Software, 2021.

Summary

• Make an effective use of object orientation
• Have an architectural model
• Software organisation and rules

• Adopt code review
• Manage technical debt
• Make payments

• Use metrics and static analysis tools
• Collect runtime data
• Consistent use of software logging
• Know what data to collect with low performance impact

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 30

Challenges

• Quality
• Conformance with requirements

• Organisational requirements
• Project requirements

• Functional
• Non-functional

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 31

Performance Bugs

Security Bugs

Challenges

• Performance Bugs
• Finding and fixing performance issues

• Search for equal or similar objects
• Overuse of temporary structures
• Containers used too little or too much
• Data unnecessarily copied
• Etc.

• A software engineer’s responsibility!

4/4/21 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 32

Charles E. Leiserson. 2018. The Resurgence of Software Performance Engineering. SPAA '18.
DOI:https://doi.org/10.1145/3210377.3210378

Cloud computing: high costs
The end of Moore’s Law

Challenges

• Performance Bugs
• Use of application-level caching

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 33

MERTZ, J. ; NUNES, I. . Understanding Application-Level Caching in Web Applications: A
Comprehensive Introduction and Survey of State-of-the-Art Approaches. ACM COMPUTING
SURVEYS, v. 50, p. 1-34, 2017.

Podcast: Fronteiras em
Engenharia de Software:

https://anchor.fm/fronteirases
Episode #8

https://anchor.fm/fronteirases

Challenges

• Performance Bugs
• Use of application-level

caching

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 34

MERTZ, J. ; NUNES, I. . Understanding Application-Level Caching in Web Applications: A
Comprehensive Introduction and Survey of State-of-the-Art Approaches. ACM COMPUTING
SURVEYS, v. 50, p. 1-34, 2017.

Challenges

• Security Bugs

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 35

Challenges

• Security Bugs

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 36

Challenges

What do we make?4
04/04/2021 From the ICSE presentation by @margaretstorey 37

Challenges

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 38

https://github.com/kamranahmedse/developer-roadmap

04/04/2021

Challenges

• Heterogeneous world of technologies and
programming languages
• OO and functional languages
• Compiled and interpreted languages
• Strongly and dynamically typed languages
• General purpose and domain-specific languages

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 40

Our central finding is that both static type systems find
an important percentage of public bugs: both Flow 0.30
and TypeScript 2.0 successfully detect 15%!

Zheng Gao, Christian Bird, and Earl T. Barr. 2017. To type or not to type: quantifying detectable bugs in
JavaScript. In Proceedings of the 39th International Conference on Software Engineering (ICSE '17).
IEEE Press, Piscataway, NJ, USA, 758-769. DOI: https://doi.org/10.1109/ICSE.2017.75

Challenges

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 41

All project decisions must be well
informed! Too bad that TECHNICAL
decisions often become BUSINESS
decisions.

Final Considerations

• Most of the content of this talk are covered in
undergraduate courses
• Problem: theory vs. practice
• Role of internship (at least, in Brazil)?

• To give importance to code maintainability and legibility
• Cost reduction (less bugs, easier evolution)
• Happy programmers

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 42

Programmers vs. Software Engineers

Final Considerations

• Most of the content of this talk are covered in
undergraduate courses
• Problem: theory vs. practice
• Role of internship (at least, in Brazil)?

• To give importance to code maintainability and legibility
• Cost reduction (less bugs, easier evolution)
• Happy programmers

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 43

Programmers vs. Software Engineers

Despite all advances, why does go horse still
exist?

Final Considerations

• How to help us?

• Access to projects and developers for research
• Project mining (with access to the source code or issue

trackers)
• Surveys with developers
• It is possible to sign NDAs (Non-Disclosure Agreement)

• Publicatins may or may not include acknowledgements
• Annonymised data (after the company’s approval)

04/04/2021 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 44

Thanks!

• Prof. Ingrid Nunes (UFRGS)
• Homepage

http://inf.ufrgs.br/~ingridnunes/
• Twitter

https://twitter.com/ingridnunesIN
• Facebook

https://www.facebook.com/ingridnunesIN
• LinkedIn

https://www.linkedin.com/in/ingrid-nunes/

Why does go horse still exist?

http://inf.ufrgs.br/~ingridnunes/
https://twitter.com/ingridnunesIN
https://www.facebook.com/ingridnunesIN
https://www.linkedin.com/in/ingrid-nunes/

