
Software Architecture Recovery:
Importance, Challenges, and Methods

Ingrid Nunes

UFRGS, Porto Alegre, Brazil

in collaboration with
Vanius Zapalowski and Daltro Nunes

10/15/2019 ingridnunes@inf.ufrgs.br 2

"Software architecture is the set

of design decisions which, if

made incorrectly, may cause

your project to be cancelled."

- Eoin Woods

10/15/2019 ingridnunes@inf.ufrgs.br 3

Software Architecture

• Structure(s) of its parts
• Including design-time, test-time, and

run-time hardware and software parts

• Externally visible properties
• Modules with interfaces,

hardware units, objects

• Relationships and constraints
• Dependencies

10/15/2019 ingridnunes@inf.ufrgs.br 4

"The software architecture of a program or computing system

is the structure or structures of the system, which comprise

software elements, the externally visible properties of those

elements, and the relationships among them.”

- Bass et al. 2003

Software Architecture

• Modules
• Including design-time, test-time, and

run-time hardware and software parts

• Externally visible properties
• Modules with interfaces,

hardware units, objects

• Relationships and constraints
• Dependencies

10/15/2019 ingridnunes@inf.ufrgs.br 5

"The software architecture of a program or computing system

is the structure or structures of the system, which comprise

software elements, the externally visible properties of those

elements, and the relationships among them.”

- Bass et al. 2003

Software Architecture

• Modules
• Including design-time, test-time, and

run-time hardware and software parts

• Externally visible properties
• Modules with interfaces,

hardware units, objects

• Relationships and constraints
• Dependencies

10/15/2019 ingridnunes@inf.ufrgs.br 6

"The software architecture of a program or computing system

is the structure or structures of the system, which comprise

software elements, the externally visible properties of those

elements, and the relationships among them.”

- Bass et al. 2003

Software Architecture

• Modules
• Including design-time, test-time, and

run-time hardware and software parts

• Externally visible properties
• Modules with interfaces,

hardware units, objects

• Relationships and constraints
• Dependencies

10/15/2019 ingridnunes@inf.ufrgs.br 7

"The software architecture of a program or computing system

is the structure or structures of the system, which comprise

software elements, the externally visible properties of those

elements, and the relationships among them.”

- Bass et al. 2003

Software Architecture

• Key principles

• Modularization

• Decomposition of a system
into groups of subsystems and components

• Physical packaging of entities

• Separation of Concerns

• Isolation of responsibilities

• If a component plays different roles in different contexts,
these roles must be separated

INF01127 ingridnunes@inf.ufrgs.br 8

There must be a way to

implement architectural

modules into the source

code (e.g. packages)!

Software Architecture

• Key design decisions
• Adopted technologies

• Non-functional requirements

10/15/2019 ingridnunes@inf.ufrgs.br 9

10/15/2019 ingridnunes@inf.ufrgs.br 10

If you think good architecture is expensive, try bad

architecture."

- Brian Foot and Joseph Yoder

Software Architecture

• Fundamental for the organised evolution of
software systems

15/10/2019 Ingrid Nunes <ingridnunes@inf.ufrgs.br> 11

View

Data

Business BO 1. Business

Rule

3. Bug: violated

business rule 4. Duplicated

code!

2.

Software Architecture

• Majority of existing systems
• Architecture documentation does not exist

• If it exists, it is outdated

10/15/2019 ingridnunes@inf.ufrgs.br 12

Conceptual

Architecture
Concrete

Architecture

Software Architecture

M. T. Rahman, P. C. Rigby, E. Shihab, The modular and feature toggle architectures

of Google Chrome, Empirical Software Engineering (2019) 24:826–853

Software Architecture

M. T. Rahman, P. C. Rigby, E. Shihab, The modular and feature toggle architectures

of Google Chrome, Empirical Software Engineering (2019) 24:826–853

Software Architecture

• Software Reflexion Models

Gail C. Murphy, David Notkin, Kevin J. Sullivan. Software Reflexion Models: Bridging

the Gap Between Source and High-Level Models. SIGSOFT FSE 1995: 18-28

Software Architecture

• But… many studies report a high number of
architecture violations

10/15/2019 ingridnunes@inf.ufrgs.br 16

Conceptual

Architecture
Concrete

Architecture

Why?

Understanding architecture
non-conformance

Software Architecture Recovery

10/15/2019 ingridnunes@inf.ufrgs.br 18

Research Questions

1. What is the gap between conceptual
architectural rules and implemented module
dependencies?

2. How can implemented module dependencies
be categorized in relation to conceptual
architectural rules?

3. Are implemented module dependencies
distinguishable considering their
categorization?

ZAPALOWSKI, V. ; NUNES, I. ; NUNES, D. Understanding architecture non-conformance: Why is

there a gap between conceptual architectural rules and source code dependencies? SBES 2018.

Procedure Overview

10/15/2019 ingridnunes@inf.ufrgs.br 20

Target Systems

System LOC Rules Architecture

ArchStudio 236.9K 53 Heterogeneous

AspectJ 217.9K 31 Heterogeneous

EC 11.7K 19 Layered

Metrics 15.6K 8 Extended MVC

OLIS 11.4K 13 Layered

RecSys 22.8 19 Heterogeneous

10/15/2019 ingridnunes@inf.ufrgs.br 21

RQ1: Conceptual Architecture
vs. Dependencies

• Analysis of implemented dependencies
• Architecture conformance

10/15/2019 ingridnunes@inf.ufrgs.br 22

RQ1: Conceptual Architecture
vs. Dependencies

10/15/2019 ingridnunes@inf.ufrgs.br 23

• Architecture
conformance is
low

• Except EC and
OLIS

• Consistency with
previous work

System Implemented

Dependencies

Architecture

Conformance

ArchStudio 1178 26.1%

AspectJ 683 28.7%

EC 135 94.1%

Metrics 45 55.6%

OLIS 86 93.0%

RecSys 375 36.0%

Mean 55.6%

SD 31.2%

RQ1: Conceptual Architecture
vs. Dependencies

• Analysis of allowed dependencies
• Rule conformance

10/15/2019 ingridnunes@inf.ufrgs.br 24

RQ1: Conceptual Architecture
vs. Dependencies

• Most systems have
very low results

• Exception: Metrics
• Small system

• Architectural rules are
possibly too
permissive

10/15/2019 ingridnunes@inf.ufrgs.br 25

System Allowed

Dep.

Rule

Conf.

ArchStudio 1178 1.8%

AspectJ 683 14.0%

EC 135 16.8%

Metrics 45 39.7%

OLIS 86 11.4%

RecSys 375 14.6%

Mean 16.4%

SD 12.8%

RQ2: Dependency Categories

• Conceptual

• Sub-conceptual

• Intra-module

• Unexpected

10/15/2019 ingridnunes@inf.ufrgs.br 26

RQ2: Dependency Categories

10/15/2019 ingridnunes@inf.ufrgs.br 27

• Low number of conceptual dependencies
• Expected

• Higher number of sub-conceptual and intra-module
• But this might be a problem…

RQ2: Dependency Categories

• Sub-conceptual
• Too coarse-grained

conceptual
dependencies

• Business vs.
Business.Service

• Intra-module
dependencies

• Possible need for
refinement of
architectural rules

• Disorganized system
evolution

10/15/2019 ingridnunes@inf.ufrgs.br 28

RQ2: Dependency Categories

10/15/2019 ingridnunes@inf.ufrgs.br 29

• High number of unexpected dependencies
• Expected
• Not only violations but also undocumented rules

• AspectJ and RecSys
• Ignored dependencies (e.g. util)

RQ3: Distinction of
Dependencies

• Automation of the recovery of architectural
rules

• Analysis of the support metric
• Percentage of the elements of module X that depend on

elements of module Y

• Different perspectives

10/15/2019 ingridnunes@inf.ufrgs.br 30

AVG and MED of sub-conceptual dependencies higher than
conceptual dependencies (but Metrics)
Confirms that architectural rules should be finer-grained

Lack of intra-module rules (only for some systems)

Unexpected dependencies: low support unless they
correspond to undocumented rules (significant difference)

Summary

10/15/2019 ingridnunes@inf.ufrgs.br 34

There is a large gap between conceptual

architecture and source code

Both architecture and rule conformance

Sub-conceptual and intra-module dependencies

Typically not investigated

Can provide information about the quality of the

system architecture

Unexpected dependencies

Can be identified by the support metric

Identification of undocumented rules or

architectural violations

10/15/2019 ingridnunes@inf.ufrgs.br 35

"Most architectures are accidental, not intentional"

- Grady Booch

The WGB Method

Software Architecture Recovery

10/15/2019 ingridnunes@inf.ufrgs.br 36

Architecture Recovery

• Approaches to identify modules
• Pattern-based approaches

• Rely on catalogues that contain known high-level patterns

• Clustering approaches
• Search for similarities among source code elements to group

them into clusters

• Metrics to evaluate these approaches
• MoJoFM

• Number of move or join operations

• Architecture-to-architecture (a2a)
• Distance between ground-truth and recovered architecture

• Cluster-to-Cluster Coverage (c2ccvg)
• Degree of overlap between the implementation-level entities

contained in two clusters

Garcia, Ivkovic, Medvidovic. (2013) A Comparative Analysis of Software

Architecture Recovery Techniques. ASE 2013.

Recovering Architectural Rules:
Goals

• Rules must be
expressed at the
highest granularity
level as possible

• Implemented rules
may capture hidden
information, not
expressed in
conceptual rules

• Rules associated with
sparse
dependencies must
be fine-grained

10/15/2019 ingridnunes@inf.ufrgs.br 38

WGB Method Overview

• Input
• Package structure

• Source code
dependencies

• Steps
• Calculation of the

module dependency
strength metric

• Pairwise clusterisation
of dependencies

• Selection of
architectural rules

ZAPALOWSKI, VANIUS ; NUNES, I. ; NUNES, D. . The WGB method to recover implemented

architectural rules. INFORMATION AND SOFTWARE TECHNOLOGY, v. 103, p. 125-137, 2018.

Module Dependency Strength
(MDS)

• Intensity
• Captures the percentage of elements of a module X

that depend on elements of a module Y

10/15/2019 ingridnunes@inf.ufrgs.br 40

Module Dependency Strength
(MDS)

• Distribution
• Captures the percentage of sub-modules of the

module X that depend of sub-modules of the
module Y

10/15/2019 ingridnunes@inf.ufrgs.br 41

Module Dependency Strength
(MDS)

• MDS is the sum of the intensity of the source
and target modules, weighted by their
normalised distribution

• MDS(P, S) = 0.47 × 0.44 + 0.53 × 0.36 =
 0.21 + 0.19 =
 0.40

10/15/2019 ingridnunes@inf.ufrgs.br 42

Pairwise Clusterization of
Dependencies

• Possible architectural rules

10/15/2019 ingridnunes@inf.ufrgs.br 43

Parent-to-Parent Parent-to-Child Child-to-Parent Child-to-Child

P S P S1

P S2

P S3

F2 S

F3 S

F2 S1

F2 S2

F2 S3

F3 S1

F3 S2

Pairwise Clusterization of
Dependencies

• Possible architectural rules

10/15/2019 ingridnunes@inf.ufrgs.br 44

Parent-to-Parent Parent-to-Child Child-to-Parent Child-to-Child

P S P S1

P S2

P S3

F2 S

F3 S

F2 S1

F2 S2

F2 S3

F3 S1

F3 S2

Pairwise Clusterization of
Dependencies

• Possible architectural rules

10/15/2019 ingridnunes@inf.ufrgs.br 45

Parent-to-Parent Parent-to-Child Child-to-Parent Child-to-Child

P S P S1

P S2

P S3

F2 S

F3 S

F2 S1

F2 S2

F2 S3

F3 S1

F3 S2

Pairwise Clusterization of
Dependencies

• Possible architectural rules

10/15/2019 ingridnunes@inf.ufrgs.br 46

Parent-to-Parent Parent-to-Child Child-to-Parent Child-to-Child

P S P S1

P S2

P S3

F2 S

F3 S

F2 S1

F2 S2

F2 S3

F3 S1

F3 S2

Pairwise Clusterization of
Dependencies

10/15/2019 ingridnunes@inf.ufrgs.br 47

Highest MDS Mean

Selection of Architectural Rules

• Package hierarchies might have redundant
rules

• Selection of the subset of non-redundant rules
that maximises the MDS metric

10/15/2019 ingridnunes@inf.ufrgs.br 48

Case Study

10/15/2019 ingridnunes@inf.ufrgs.br 49

Evaluation

• Empirical Study
• Architecture recovery

• By a set of developers

• By the WGB method

• Comparison between architectures
• Evaluation of divergences by developers

• Results
• The WGB method provides finer-grained rules

• The provided information is useful

• Developers would use the provided model as an
architecture model

10/15/2019 ingridnunes@inf.ufrgs.br 50

Challenges

• How to generate views that are at the right
level for communication

• How to enforce rule compliance during
software evolution

• How to distinguish undocumented
rules from architectural violations

10/15/2019 ingridnunes@inf.ufrgs.br 51

Conclusion

10/15/2019 ingridnunes@inf.ufrgs.br 52

Inscrições para mestrado e
doutorado abertas!

10/15/2019 http://www.inf.ufrgs.br/ppgc/ 53

Thank you!

• Software Architecture Recovery:
Importance, Challenges, and Methods

• Ingrid Nunes
• ingridnunes@inf.ufrgs.br

54

Vanius

Zapalowski

Daltro

Nunes

mailto:ingridnunes@inf.ufrgs.br

